1. 计算WPL(10分)

Huffman编码是通信系统中常用的一种不等长编码,它的特点是:能够使编码之后的电文长度最短。
输入:
第一行为要编码的符号数量n
第二行~第n+1行为每个符号出现的频率
输出:
对应哈夫曼树的带权路径长度WPL

#include <stdio.h>
#include <stdlib.h>
#define INF 0x3f3f3f
int last, wpl, len;
int data[1000];
void findmin()
{
	int i, x1, x2;
	x1 = x2 = last;
	int min1 = data[last];
	int min2 = INF;
	for (i = last; i < len; i++)
	{
		if (data[i] < min1)
		{
			min1 = data[i];
			x1 = i;
		}
	}
	for (i = last; i < len; i++)
	{
		if (data[i] <= min2 && i != x1)
		{
			min2 = data[i];
			x2 = i;
		}
	}
	wpl += min1 + min2;
	data[x2] = min1 + min2;
	data[x1]=data[last];
	data[last]=0;
	last++;
}
int main()
{
	int i, n;
	scanf("%d",&n);
	if(n==1)
	{
		printf("WPL=%d\n",n);
		return 0;
	}
	for(i=0;i<n;i++)
		scanf("%d",&data[i]);
	len = n;
	while(n-->1)
		findmin();
	printf("WPL=%d\n",wpl);
	return 0;
}
Huffman编码(也称为最优二叉树编码或霍夫曼树)是一种用于数据压缩的无损压缩算法,它是基于字符出现频率设计的。WPL(Weighted Path Length)是衡量Huffman编码效率的一个指标,它表示所有编码字节的平均长度。 在Huffman编码,每个节点代表一个字符,频率较高的字符对应较短的编码路径,而频率较低的字符对应较长的编码路径。计算WPL的步骤如下: 1. **构建Huffman树**:首先,根据字符的频率创建一个空的Huffman树,频率高的字符优先被合并到一起。 2. **计算路径长度**:对于每个字符,从根节点沿着其编码路径向下走,记录下经过的边的数量。路径长度通常是边的数目乘以对应的边值(通常是1),因为Huffman树的边通常代表添加一个0或1。 3. **求平均**:将所有字符的路径长度相加,然后除以字符总数得到总路径长度。 4. **权重转化为频率**:如果WPL定义为按照字符的频率而非等权的话,还需要将每个路径长度乘以其对应的字符频率。 以下是一个简单的C++示例代码,用来计算给定字符频率数组的WPL: ```cpp #include <iostream> #include <vector> #include <queue> struct Node { char data; int freq; Node* left, *right; Node(char c, int f) : data(c), freq(f), left(nullptr), right(nullptr) {} }; Node* buildHuffmanTree(std::vector<int>& freqs) { // 详细实现这里包括优先队列、合并节点等 } int calculateWPL(Node* root, std::vector<int>& freqs) { if (root == nullptr) return 0; // 如果为空,返回0 int leftPath = calculateWPL(root->left, freqs); int rightPath = calculateWPL(root->right, freqs); int pathLength = leftPath + rightPath + 1; // 假设每次左转加1,右转不变 return freqs[root->data] * pathLength; } double weightedPathLength(std::vector<int> freqs) { Node* huffTree = buildHuffmanTree(freqs); double totalLength = calculateWPL(huffTree, freqs); delete huffTree; return totalLength; } int main() { std::vector<int> freqs = {5, 6, 8, 1, 3}; // 假设这是字符频率 double wpl = weightedPathLength(freqs); std::cout << "Weighted Path Length (WPL): " << wpl << std::endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值