flink中消费kafka数据防止乱序

 

 

Kafka 分区时间戳

当以 Kafka 来作为数据源的时候,通常每个 Kafka 分区的数据时间戳是递增的(事件是有序的),但是当你作业设置多个并行度的时候,Flink 去消费 Kafka 数据流是并行的,那么并行的去消费 Kafka 分区的数据就会导致打乱原每个分区的数据时间戳的顺序。在这种情况下,你可以使用 Flink 中的 Kafka-partition-aware 特性来生成水印,使用该特性后,水印会在 Kafka 消费端生成,然后每个 Kafka 分区和每个分区上的水印最后的合并方式和水印在数据流 shuffle 过程中的合并方式一致。

如果事件时间戳严格按照每个 Kafka 分区升序,则可以使用前面提到的 AscendingTimestampExtractor 水印生成器来为每个分区生成水印。下面代码教大家如何使用 per-Kafka-partition 来生成水印。

FlinkKafkaConsumer011<Event> kafkaSource = new FlinkKafkaConsumer011<>("aaa", schema, props);
kafkaSource.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<Event>() {

    @Override
    public long extractAscendingTimestamp(Event event) {
        return event.eventTimestamp();
    }
});

DataStream<Event> stream = env.addSource(kafkaSource);

下图表示水印在 Kafka 分区后如何通过流数据流传播:

 

标题

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值