1007 素数对猜想 (20 分)
让我们定义dn为:dn=pn+1−pn,其中pi是第i个素数。显然有d1=1,且对于n>1有dn是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N
(<105),请计算不超过N
的满足猜想的素数对的个数。
输入格式:
输入在一行给出正整数N
。
输出格式:
在一行中输出不超过N
的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
求素数的方式要选对,简单方法中最优即2~sqrt(n)内枚举(包括开头结尾)可以承受10^5内数据
2~n/2内枚举最后一组数据会超时
欧式筛法都用不到,只有10^5 不过欧式筛法:nloglogn 与根号枚举法nlogn也差不了多少 欧式筛几乎用不到了
代码1:(最佳最简)
#include<bits/stdc++.h>
using namespace std;
bool isPrime(int n){
if(n<2) return false;
int sqr=(int)sqrt(n);
for(int i=2;i<=sqr;i++){//枚举到n/2最后一组数据会超时 开根号是折中不快不慢的做法10**5内都能接受
if(n%i==0) return false;
}
return true;
}
int main(){
//freopen("in.txt","r",stdin);
int n,count=0;
cin>>n;
for(int i=2;i<=n-2;i++){//注意最后一对是n-2 n 从n-2开始封
if(isPrime(i)&&isPrime(i+2)) count++;
}
cout<<count;
return 0;
}
代码2:(不推荐,且实际耗时测试还要长些)
#include<bits/stdc++.h>
using namespace std;
const int maxn=100000+10;
int prime[maxn]={0},pnum=0;
bool p[maxn]={0};//p[i]=0为素数 为1为合数
//欧式筛法筛出1~n内所有素数
void Find_Prime(int n){
for(int i=2;i<=n;i++){
if(p[i]==0){
prime[pnum++]=i;//被忘了将素数都记录下来啊
for(int j=i+i;j<=n;j+=i){
p[j]=1;//i的倍数都标记为合数
}
}
}
}
int main(){
//freopen("in.txt","r",stdin);
int n,count=0;
cin>>n;
Find_Prime(n);
for(int i=0;i<pnum-1;i++){
if(prime[i+1]-prime[i]==2) count++;
}
cout<<count;
return 0;
}