1.manacher算法
马拉车算法,在O(n)时间内解决寻找源字符串的最长回文子串S的问题的算法。朴素算法情况下对于每一个S[i]都要左右遍历其最大回文子串,所以时间复杂度是O(n2)。
参考博客:
https://www.cnblogs.com/czsharecode/p/9705358.html
https://www.cnblogs.com/yangxingsha/p/11722557.html(有错误,“从左往右计算数组P[ ], Mi为之前取得最大回文串的中心位置,而R是最大回文串能到达的最右端的值。”)
//返回源字符串S的最长回文子串
string Manacher(string s){
//预处理源串
string t = "$#";
for(int i=0; i<s.size(); i++){
t+=s[i];
t+="#";
}
//新建p数组,大小和t串一致,初始化为0 ,p[i]表示以t[i]为中心的回文串半径
vector<int> p(t.size() , 0);
//设定重要参数 mx(某回文串延伸到的最右边下标),id(mx所属回文串中心下标),
//reCenter(结果最大回文串中心下标),reLen(最大长回文长度)
int mx = 0, id = 0, reCenter = 0, reLen = 0;
//遍历t字符串
for(int i=1; i<t.size(); i++){
//核心算法
p[i] = mx > i ? min(mx - i , p[2*id - i]) : 1;
//上面的语句只能确定i~mx的回文情况,至于mx之后的部分是否对称,就只能老老实实去匹配了,匹配一个p[i]++
while(t[i + p[i]] == t[i - p[i]]) p[i]++;
//当t[i]匹配的 右边界超过mx时mx和id就更新
if(i+p[i] > mx){
mx = i+p[i];
id = i;
}
//更新结果数据
if(p[i] > reLen){
reLen = p[i];
reCenter = i;
}
}
return s.substr((reCenter - reLen) / 2 , reLen - 1) ;
}
2.字符串哈希
https://www.luogu.com.cn/problem/solution/P3370
https://www.luogu.com.cn/blog/yhzq/solution-p3370
3.字典树
本文总结了字符串处理中两个重要的算法:Manacher算法,用于在O(n)时间复杂度内找到最长回文子串;以及字符串哈希方法,常用于快速判断字符串是否相等。同时,提到了字典树这一数据结构在字符串操作中的应用。
1532

被折叠的 条评论
为什么被折叠?



