服务器用户 Tensorflow 与 CUDA 版本不兼容问题的解决

本文介绍了如何解决Tensorflow与CUDA版本不兼容的问题,特别是对于在Linux服务器上没有root权限的用户。通过创建conda虚拟环境,并在其中安装tensorflow-gpu,避免了直接安装CUDA带来的兼容性问题。同时,文章还提醒了在服务器上运行GPU训练时,合理管理GPU设备以避免资源冲突的重要性。
摘要由CSDN通过智能技术生成

作者原创,转载请注明出处 https://blog.csdn.net/hzberg/article/details/84070855

问题背景

目前,Tensorflow是很流行的Deep Learning学习框架,但进行Network训练时一个很大的困难是进行一次完整的训练(通常需要上百个epoch)所需的时间太长,如果仅依赖CPU计算可能要花上数天的时间。

为了应对深度学习这种计算密集型任务的需求,NVIDIA公司提供了GPU加速的解决方案,其速度通常至少可以达到CPU的数倍,大大节约了Deep Learning的时间周期,让开发者能够把更多时间投入Model本身的设计及算法上。

对PC用户而言,如果自己拥有独立NVIDIA显卡,只要是官网公布的被支持的GPU型号,就可以配置 Tensorflow(GPU) + CUDA + cudnn 开发环境,方便地应用GPU来加速训练过程,官网公布的支持CUDA的GPU列表,参照官网链接:https://developer.nvidia.com/cuda-gpus

在个人PC上配置 Tensorflow(GPU) + CUDA + cudnn 开发环境已经有很多博客介绍过,只是需要注意三者之间的版本兼容问题。不过,即使不小心安装错了版本,由于拥有PC的superuser权限,便可以很方便地卸载并重新安装正确版本。

然而,对学校研究人员或公司研发人员来说,通常

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值