图的总结

一、图的定义:

图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G=(V,E)

其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合。

在线性表中,元素个数可以为零,称为空表;

在树中,结点个数可以为零,称为空树;

在图中,顶点个数不能为零,但可以没有边。

 

若顶点vi和vj之间的边没有方向,则称这条边为无向边,表示为(vi,vj)。

若从顶点vi到vj的边有方向,则称这条边为有向边,表示为<vi,vj>。

 

在线性结构中,数据元素之间仅具有线性关系;

在树结构中,结点之间具有层次关系;

在图结构中,任意两个顶点之间都可能有关系。

 

无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。

有向完全图:在有向图中,如果任意两个顶点之间都存在方向相反的两条弧,则称该图为有向完全图。  

 

二、图的基本术语:

稀疏图:称边数很少的图为稀疏图;

稠密图:称边数很多的图为稠密图。

 

顶点的度:在无向图中,顶点v的度是指依附于该顶点的边数,通常记为TD (v)。

顶点的入度:在有向图中,顶点v的入度是指以该顶点为弧头的弧的数目,记为ID (v);

顶点的出度:在有向图中,顶点v的出度是指以该顶点为弧尾的弧的数目,记为OD (v)。

 

路径:在无向图G=(V, E)中,从顶点vp到顶点vq之间的路径是一个顶点序列(vp=vi0,vi1,vi2, …, vim=vq),其中,(vij-1,vij)∈E(1≤j≤m)。若G是有向图,则路径也是有方向的,顶点序列满足<vij-1,vij>∈E。

回路(环):第一个顶点和最后一个顶点相同的路径。

简单路径:序列中顶点不重复出现的路径。

简单回路(简单环):除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路。

 

连通图:在无向图中,如果从一个顶点vi到另一个顶点vj(i≠j)有路径,则称顶点vi和vj是连通的。如果图中任意两个顶点都是连通的,则称该图是连通图。

连通分量:非连通图的极大连通子图称为连通分量。

 

强连通图:在有向图中,对图中任意一对顶点vi和vj (i≠j),若从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称该有向图是强连通图。

强连通分量:非强连通图的极大强连通子图。

 

生成树:n个顶点的连通图G的生成树是包含G中全部顶点的一个极小连通子图。

 

 

三、图的抽象数据类型定义

ADT  Graph

Data

    顶点的有穷非空集合和边的集合

Operation

  InitGraph

     前置条件:图不存在

     输入:无

     功能:图的初始化

     输出:无

     后置条件:构造一个空的图

DFSTraverse

     前置条件:图已存在

     输入:遍历的起始顶点v

     功能:从顶点v出发深度优先遍历图

     输出:图中顶点的一个线性排列

     后置条件:图保持不变

  BFSTraverse

     前置条件:图已存在

     输入:遍历的起始顶点v

     功能:从顶点v出发广度优先遍历图

     输出:图中顶点的一个线性排列

     后置条件:图保持不变

DestroyGraph

     前置条件:图已存在

     输入:无

     功能:销毁图

     输出:无

     后置条件:释放图所占用的存储空间

GetVex

     前置条件:图已存在

     输入:顶点v

     功能:在图中查找顶点v的数据信息

     输出:顶点v的数据信息

     后置条件:图保持不变

endADT

 

四、图的遍历操作

图的遍历是从图中某一顶点出发,对图中所有顶点访问一次且仅访问一次。

 

图的遍历操作要解决的关键问题:

在线性表中,数据元素在表中的编号就是元素在序列中的位置,因而其编号是唯一的;

在树中,将结点按层序编号,由于树具有层次性,因而其层序编号也是唯一的;

在图中,任何两个顶点之间都可能存在边,顶点是没有确定的先后次序的,所以,顶点的编号不唯一。

为了定义操作的方便,将图中的顶点按任意顺序排列起来,比如,按顶点的存储顺序。

 

 

深度优先遍历基本思想:

⑴ 访问顶点v;

⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;

⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。

 

广度优先遍历基本思想:

⑴ 访问顶点v;

⑵ 依次访问v的各个未被访问的邻接点v1, v2, …, vk;

⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。

 

五、图的存储结构及实现

图的特点:顶点之间的关系是m:n,即任何两个顶点之间都可能存在关系(边),无法通过存储位置表示这种任意的逻辑关系,所以,图无法采用顺序存储结构。

 

邻接矩阵(数组表示法)

基本思想:

用一个一维数组存储图中顶点的信息

用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系。

 

const int MaxSize=10;

template <class T>

class Mgraph{

   public:

      MGraph(T a[ ], int n, int e );   

       ~MGraph( )

       void DFSTraverse(int v);

       void BFSTraverse(int v);

        ……

   private:

       T vertex[MaxSize];

       int arc[MaxSize][MaxSize];

       int vertexNum, arcNum;

};

 

邻接矩阵中图的基本操作——构造函数

1、确定图的顶点个数和边的个数;

2、输入顶点信息存储在一维数组vertex中;

3、初始化邻接矩阵;

4、依次输入每条边存储在邻接矩阵arc中;

     4.1 输入边依附的两个顶点的序号i, j;

     4.2 将邻接矩阵的第i行第j列的元素值置为1;

     4.3 将邻接矩阵的第j行第i列的元素值置为1;

例:template <class T>

MGraph::MGraph(T a[ ], int n, int e) {

    vertexNum=n; arcNum=e;

    for (i=0; i<vertexNum; i++)

        vertex[i]=a[i];

    for (i=0; i<vertexNum; i++)    //初始化邻接矩阵

   for (j=0; j<vertexNum; j++)

           arc[i][j]=0;             

    for (k=0; k<arcNum; k++) {

        cin>>i>>j;     //边依附的两个顶点的序号

        arc[i][j]=1;  arc[j][i]=1;  //置有边标志    

    }

}

 

六、邻接矩阵上的其他操作
1、增加一个顶点

在存储顶点的一维数组中插入该顶点的信息

在邻接矩阵中插入一行、一列

2、删除一个顶点

在存储顶点的一维数组中删除该顶点的信息

在邻接矩阵中删除一行、一列

3、增加一条边

修改相应的矩阵元素的值

4、删除一条边

修改相应的矩阵元素的值

5、增删顶点

增加:顶点表中插入一个元素

删除:在顶点表中删除一个元素,同时在边表中删除相应的边

6、增删边<x, y>

如果是有向图,则在x的边表中增加/删除边;

如果是无向图,则还要在y的边表中增加/删除一条边

 

  • 图的相关算法

(1)、普里姆(Prim)算法

基本思想:

设G=(V, E)是具有n个顶点的连通网,

T=(U, TE)是G的最小生成树,

T的初始状态为U={u0}(u0∈V),TE={ },

重复执行下述操作:

在所有u∈U,v∈V-U的边中找一条代价最小的边(u, v)并入集合TE,同时v并入U,直至U=V。

 

1. 初始化两个辅助数组lowcost(=arc[0][i])和adjvex(=0)(0是始点);

2. 输出顶点u0,将顶点u0加入集合U中;

3. 重复执行下列操作n-1次

   3.1 在lowcost中选取最短边(lowcost[k]),取对应的顶点序号k;

   3.2 输出顶点k和对应的权值;

   3.3 将顶点k加入集合U中(lowcost[k]=0);

   3.4 调整数组lowcost和adjvex;

 

(2)、克鲁斯卡尔(Kruskal)算法

基本思想:

设无向连通网为G=(V, E),令G的最小生成树为T=(U, TE),其初态为U=V,TE={ },

然后,按照边的权值由小到大的顺序,考察G的边集E中的各条边。

若被考察的边的两个顶点属于T的两个不同的连通分量,则将此边作为最小生成树的边加入到T中,同时把两个连通分量连接为一个连通分量;

若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,

如此下去,当T中的连通分量个数为1时,此连通分量便为G的一棵最小生成树。

 

1. 初始化:U=V;  TE={ };

2. 循环直到T中的连通分量个数为1  

     2.1 在E中寻找最短边(u,v);

     2.2 如果顶点u、v位于T的两个不同连通分量,则

           2.2.1 将边(u,v)并入TE;

           2.2.2 将这两个连通分量合并为一个;

     2.3 在E中标记边(u,v),使得(u,v)不参加后续最短边的选取;

 

算法中存在的三个关键问题:

1、图的存储结构

采用边集数组存储图。

2、如何判断一条边所依附的两个顶点在同一个连通分两中(并查集)

      定义Parent[i]数组。数组分量的值表示顶点i的双亲节点(初值为-1;)

     当一条边(u,v)的两个顶点的根结不同时,这两个结点属于不同的连通分量(利用parent 数组查找一棵树的根节点。当一个结点n的parent==-1,树的根节点即为n)

3.   如何将一条边所依附的两个顶点合并到同一个连通分量中

      要进行联通分量的合并 ,其中一个顶点所在的树的根节点为vex1,另一个顶点所在的树的根节点为vex2,则:parent[vex2]=vex1;

 

(3)、Dijkstra算法

基本思想:

1、设置一个集合S存放已经找到最短路径的顶点,S的初始状态只包含源点v,

2、对vi∈V-S,假设从源点v到vi的有向边为最短路径(从v到其余顶点的最短路径的初值)。

3、以后每求得一条最短路径v, …, vk,就将vk加入集合S中,并将路径v, …, vk , vi与原来的假设相比较,取路径长度较小者为最短路径。

重复上述过程,直到集合V中全部顶点加入到集合S中。

 

再下一条路径长度次短的最短路径的特点:

它可能有四种情况:或者是直接从源点到该点(只含一条边); 或者从源点经过顶点v1,再到达该顶点(由两条边组成);或者是从源点经过顶点v2,再到达该顶点(两条条边);或者是从源点经过顶点v1、v2,再到达该顶点(多条边)。

其余最短路径的特点:

它或者是直接从源点到该点(只含一条边); 或者是从源点经过已求得最短路径的顶点(集合S中的顶点),再到达该顶点。

 

(4)、Floyd算法

基本思想:

  1. 设图g用邻接矩阵法表示,
  2.  2、求图g中任意一对顶点vi、 vj间的最短路径。

   (-1) 将vi到vj 的最短的路径长度初始化为(vi,vj), 然后进行如下n次比较和修正:

  1. 在vi、vj间加入顶点v0,比较(vi, v0, vj)和(vi, vj)的路径的长度,取其中较短的路径作为vi到vj的且中间顶点号不大于0的最短路径。

(1)  在vi、vj间加入顶点v1,

      得(vi, …,v1)和(v1, …,vj),其中:

     (vi, …, v1)是vi到v1 的且中间顶点号不大于0的最短路径,

        (v1, …, vj) 是v1到vj 的且中间顶点号不大于0的最短路径,

     这两条路径在上一步中已求出。

      将(vi, …, v1, …, vj)与上一步已求出的且vi到vj 中间顶点号不大于0的最短路径比较,取其中较短的路径作为vi到vj 的且中间顶点号不大于1的最短路径。

(2)在vi、vj间加入顶点v2,得

         (vi, …, v2)和(v2, …, vj), 其中:

        (vi, …, v2)是vi到v2 的且中间顶点号不大于1的最短路径,

           (v2, …, vj) 是v2到vj 的且中间顶点号不大于1的最短路径,

           这两条路径在上一步中已求出。

           将(vi, …, v2, …, vj)与上一步已求出的且vi到vj 中间顶点号不大于1的最短路径比较, 取其中较短的路径作为vi到vj 的且中间顶点号不大于2的最短路径。

……

 

(5)、拓扑序列:

基本思想:

⑴ 从AOV网中选择一个没有前驱的顶点并且输出;

⑵ 从AOV网中删去该顶点,并且删去所有以该顶点为尾的弧;

⑶ 重复上述两步,直到全部顶点都被输出,或AOV网中不存在没有前驱的顶点。

 

设G=(V,E)是一个具有n个顶点的有向图,V中的顶点序列v1, v2, …, vn称为一个拓扑序列,当且仅当满足下列条件:若从顶点vi到vj有一条路径,则在顶点的拓扑序列中顶点vi必在顶点vj之前。

拓扑排序:对一个有向图构造拓扑序列的过程称为拓扑排序 。

 

基于邻接表的拓扑排序的基本思想

(1)找G中无前驱的顶点

查找indegree [i]为零的顶点vi;

(2)修改邻接于顶点i的顶点的入度(删除以i为起点的所有弧)

对链在顶点i后面的所有邻接顶点k,将对应的indegree[k] 减1。

       为了避免重复检测入度为零的顶点,可以再设置一个辅助栈,若某一顶点的入度减为0,则将它入栈。每当输出某一入度为0的顶点时,便将它从栈中删除。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值