题意:
在一个长宽为h*w的黑板上贴海报,每张海报为1*wi,问新贴的海报能贴的最大高度,若不能贴则输出-1,注意贴海报的时候总是靠左贴。
思路:
线段树,因为n最大只有200000,所以当h取min(h,n)即可,最后数组只需开到8000000,然后Max【】保存该区间内能放的最大宽度,然后在query的时候顺便更新即可
AC代码如下:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
int Max[810000];
int h, w, n;
int leftchild( int root ){
return root * 2;
}
int rightchild( int root ){
return root * 2 + 1;
}
void updata( int root ){
Max[root] = max( Max[leftchild(root)], Max[rightchild(root)] );
}
void built( int l, int r, int root ){
if( l == r ){
Max[root] = w;
return;
}
int mid = ( l + r ) / 2;
built( l, mid, leftchild( root ) );
built( mid + 1, r, rightchild( root ) );
updata( root );
}
int query( int wi, int l, int r, int root ){
if( Max[root] < wi ){
return -1;
}
if( l == r ){
Max[root] -= wi;
return l;
}
int ans = -1;
int mid = ( l + r ) / 2;
if( Max[leftchild(root)] >= wi ){//若左子树符合,则询问左子树
ans = query( wi, l, mid, leftchild( root ) );
}else if( Max[rightchild(root)] >= wi ){//若右子树符合,则询问右子树
ans = query( wi, mid + 1, r, rightchild( root ) );
}else{//否则返回-1
ans = -1;
}
updata( root );
return ans;
}
int main(){
while( scanf( "%d%d%d", &h, &w, &n ) != EOF ){
h = min( h, n );
built( 1, h, 1 );
for( int i = 0; i < n; i++ ){
int temp;
scanf( "%d", &temp );
printf( "%d\n", query( temp, 1, h, 1 ) );
}
}
return 0;
}