题意:给定 M, K,求一个数N,使得 N+1,N+2, .....,N*2 这些数中有M个数的二进制表示含有K个1
思路:
N的范围为1e18次方,然后又没有好的公式来求
所以可以试一下二分+数位DP判断
yy了下,要是mid求得的 个数小于M,则mid应该变大,反之则要变小。。。。
写了下真的可以,1A
AC代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int digit[100], tot;
__int64 dp[100][100][2];
__int64 M, K;
__int64 DFS( int pos, int presum, bool st ){
if( pos < 0 ){
if( presum == K ){
return 1;
}else{
return 0;
}
}
if( !st && dp[pos][presum][st] != -1 ){
return dp[pos][presum][st];
}
__int64 ans = 0;
int endd = st ? digit[pos] : 1;
for( int i = 0; i <= endd; i++ ){
ans += DFS( pos - 1, presum + i, st && i == endd );
}
return dp[pos][presum][st] = ans;
}
__int64 solve( __int64 n ){
tot = 0;
while( n ){
digit[tot++] = n % 2;
n /= 2;
}
memset( dp, -1, sizeof( dp ) );
return DFS( tot - 1, 0, true );
}
int main(){
__int64 l, r, mid;
scanf( "%I64d%I64d", &M, &K );
l = 1;
r = 1e18;
while( l <= r ){
mid = ( l + r ) / 2;
__int64 t = solve( mid * 2 ) - solve( mid );
if( t == M ){
printf( "%I64d\n", mid );
return 0;
}else if( t < M ){
l = mid + 1;
}else{
r = mid - 1;
}
}
return 0;
}