题意:
求出区间[l,r]中的所有Beautiful Number的数目,如果一个数x可以被它各个数位上的非零数整除,那它就是Beautiful Number。
思路:
很巧妙的一道数位dp,没想出来看题解了。
假设不考虑记忆化搜索,这里可以直接枚举每一位的值来进行计算,这里可以进行状压,利用cnt(1<<8)来保存出现过的位数,每次枚举到pos==-1的时候,就可以判断这个数是否可以被所有出现过的数位整除。
这里有个很关键的一点,需要知道如果z%y==0,那么(x%z)%y==x%y,明白这一点后,发现这里一共需要判断的只有数位上出现2到9这些数,而2到9的最小公倍数是2520,也就是说,对于Beautiful Number,(x%2520)%y==x%y,由此可以想到,我们只要保存x%2520的值就可以了。
这样设计状态dp[pos][cnt][sum]表示pos位且出现的数位状态为cnt且当前数位和是sum的合法数的数目,进行记忆化搜索。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[20][(1 << 8) + 10][3000];
int a[20];
ll dfs(int pos, int cnt, int sum, int limit) {
if (pos == -1) {
for (int i = 2; i <= 9; i++)
if ((cnt & (1 << (i - 2))) && (sum % i)) return 0;
return 1;
}
if (!limit && dp[pos][cnt][sum] != -1) return dp[pos][cnt][sum];
int up = limit ? a[pos] : 9;
ll res = 0;
for (int i = 0; i <= up; i++) {
if (i < 2) res += dfs(pos - 1, cnt, (sum * 10 + i) % 2520, limit && a[pos] == i);
else res += dfs(pos - 1, cnt | (1 << (i - 2)), (sum * 10 + i) % 2520, limit && a[pos] == i);
}
if (!limit) dp[pos][cnt][sum] = res;
return res;
}
ll solve(ll x) {
int pos = 0;
while (x) {
a[pos++] = x % 10;
x /= 10;
}
return dfs(pos - 1, 0, 0, true);
}
int main() {
int T;
scanf("%d", &T);
memset(dp, -1, sizeof(dp));
while (T--) {
ll n, m;
scanf("%I64d%I64d", &n, &m);
printf("%I64d\n", solve(m) - solve(n - 1));
}
return 0;
}