【一本通提高博弈论】[ZJOI2009]取石子游戏

本文介绍了一种新的两人取石子游戏的规则,并探讨了先手玩家是否有必胜策略的问题。游戏涉及从两端取石子,每轮必须至少取一颗。通过动态规划计算中间某位置的可取石子范围,从而判断先手是否一定获胜。样例给出了具体的游戏局面和解决方案。
摘要由CSDN通过智能技术生成

[ZJOI2009]取石子游戏

题目描述

在研究过 Nim 游戏及各种变种之后,Orez 又发现了一种全新的取石子游戏,这个游戏是这样的:

n n n 堆石子,将这 n n n 堆石子摆成一排。游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中取出若干颗石子,可以将那一堆全部取掉,但不能不取,不能操作的人就输了。

Orez 问:对于任意给出一个初始一个局面,是否存在先手必胜策略。

输入格式

文件的第一行为一个整数 T T T,表示有 T T T 组测试数据。对于每组测试数据:

第一行为一个整数 n n n,表示有 n n n 堆石子。

第二行为 n n n 个整数 a 1 , a 2 , … , a n a_1, a_2, \ldots , a_n a1,a2,,an

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lvshu · 绿树

非常感谢您的搭讪

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值