[JZOJ4496] 【GDSOI 2016】互补约数

Description

d=1Ni|dgcd(i,di)

Solution

LF同志说过一句话。
“看到GCD,我们就要坚信它能够反演!”

原式显然可以化。

i=1Nj=1Nigcd(i,j)

然后就是套路

f(d)=i=1Nj=1Ni[gcd(i,j)=d]

g(d)=i=1Ndf(id)

根据g的定义(f那个式子中 d|i,d|j 的组数)
可得
g(T)=i=1NT2NT2i

因为 d|i,d|j,ij<=N
所以 d<=N

Ans=d=1Ndf(d)=d=1Ndd|Tμ(Td)g(T)

交换主体
=T=1Ng(T)d|Tμ(Td)d=T=1Ng(T)d|Tμ(d)Td

显然,你可以分块再预处理一些东西,把g代进去即可
然而,此处有一个性质

d|Tμ(d)Td=φ(T)

证明懒得打了,具体参见 大牛LYD729的BLOG
然后
=T=1Ng(T)φ(T)

g带进去
=T=1Nφ(T)i=1NT2NT2i

然后分块可以在很优的复杂度跑出来

Code

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cmath>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fod(i,a,b) for(int i=a;i>=b;i--)
#define N 320000
#define LL long long 
using namespace std;
LL pr[N],phi[N],sum[N],n;
int m,l;
bool bz[N];
void prp()
{
    l=0;
    phi[1]=sum[1]=1;
    fo(i,2,m)
    {
        if(!bz[i]) pr[++l]=i,phi[i]=i-1;
        for(int j=1;j<=l&&pr[j]*i<=m;j++)
        {
            bz[i*pr[j]]=1;
            if(i%pr[j]==0)
            {
                phi[i*pr[j]]=phi[i]*pr[j];
                break;
            }
            phi[i*pr[j]]=phi[i]*(pr[j]-1);
        }
        sum[i]=sum[i-1]+phi[i];
    }
}
int main()
{
    cin>>n;
    m=sqrt(n);
    prp();
    LL T=1,s=0;
    while(T<=m)
    {
        LL x=1,lim=n/T/T,s1=0;
        LL T1=sqrt(n/lim);
        while(x<=lim)
        {   
            LL x1=lim/(lim/x);
            s1+=(x1-x+1)*(lim/x);
            x=x1+1;
        }
        s+=(sum[T1]-sum[T-1])*s1;
        T=T1+1;
    }
    cout<<s;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值