拉格朗日插值法

##Text
对于一个k次多项式函数 f ( x ) = ∑ i = 0 k a i x i f(x)=\sum\limits_{i=0}^{k}a_ix^i f(x)=i=0kaixi

有两种表示其的方法。
可以用传统的每一项的系数来表示。

同时由于只要有K+1个(x,fx)的点对,就能唯一确定这个多项式,因此把这种表示法叫点值表示法。

系数表示法转换成点值表示法叫求值,反过来就叫插值。

当然可以高斯消元,但是复杂度比较大。

主要讨论拉格朗日插值法。

假设已经求得了K+1个点对 ( x 0 , y 0 ) . . . ( x k , y k ) (x_0,y_0)...(x_{k},y_{k}) (x0,y0)...(xk,yk)
不妨令 f ( x ) = ∑ j = 0 k ℓ j ( x ) y j f(x)=\sum\limits_{j=0}^{k}\ell_j(x)y_j f(x)=j=0kj(x)yj

其中 ℓ j ( x ) \ell_j(x) j(x)是一个关于 x x x k k k次多项式
那么
ℓ j ( x ) = 0 , ( x = x p , p ̸ = j ) \ell_j(x)=0,(x=x_p,p\not=j) j(x)=0,(x=xp,p̸=j)
ℓ j ( x ) = 1 , ( x = x j ) \ell_j(x)=1,(x=x_j) j(x)=1,(x=xj)

ℓ j ( x ) = 0 , ( x = x p , p ̸ = j ) \ell_j(x)=0,(x=x_p,p\not=j) j(x)=0,(x=xp,p̸=j)
可以直接构造 ℓ j ( x ) = w j ∏ i = 0 , i ̸ = j k ( x − x i ) \ell_j(x)=w_j\prod\limits_{i=0,i\not=j}^{k}(x-x_i) j(x)=wji=0,i̸=jk(xxi)

又由 ℓ j ( x ) = 1 , ( x = x j ) \ell_j(x)=1,(x=x_j) j(x)=1,(x=xj)
可以得出 w j = 1 ∏ i = 0 , i ̸ = j k ( x j − x i ) w_j={1\over\prod\limits_{i=0,i\not=j}^{k}(x_j-x_i)} wj=i=0,i̸=jk(xjxi)1

所以
ℓ j ( x ) = ∏ i = 0 , i ̸ = j k ( x − x i ) ∏ i = 0 , i ̸ = j k ( x j − x i ) \ell_j(x)={\prod\limits_{i=0,i\not=j}^{k}(x-x_i)\over\prod\limits_{i=0,i\not=j}^{k}(x_j-x_i)} j(x)=i=0,i̸=jk(xjxi)i=0,i̸=jk(xxi)

不妨设 ℓ ( x ) = ∏ i = 0 k ( x − x i ) \ell(x)=\prod\limits_{i=0}^{k}(x-x_i) (x)=i=0k(xxi)

于是简化为
ℓ j ( x ) = w j ℓ ( x j ) x − x j \ell_j(x)={w_j\ell(x_j)\over x-x_j} j(x)=xxjwj(xj)

所以 f ( x ) = ∑ j = 0 k ℓ ( x j ) w j y j x − x j = ∑ j = 0 k y j ∏ i = 0 , i ̸ = j k ( x − x i ) ∏ i = 0 , i ̸ = j k ( x j − x i ) f(x)=\sum\limits_{j=0}^{k}\ell(x_j){w_jy_j\over x-x_j}=\sum\limits_{j=0}^{k}y_j {\prod\limits_{i=0,i\not=j}^{k}(x-x_i)\over\prod\limits_{i=0,i\not=j}^{k}(x_j-x_i)} f(x)=j=0k(xj)xxjwjyj=j=0kyji=0,i̸=jk(xjxi)i=0,i̸=jk(xxi)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值