原题链接
https://arc064.contest.atcoder.jp/tasks/arc064_d
Description
给出N,M<=1e9
求有多少个长度为N,每个字符为1~M的一个数的字符串,满足该串旋转若干次后可以得到一个回文串(旋转定义为第一个字符放到最后一个位置)
Solution
考虑每个回文串的贡献
假设一个回文串旋转p次之后第一次又回文了,那么这个串对答案的贡献就是p
考虑求旋转p次后第一次又回文的回文串个数
将串分为
N/gcd(N,p)
N
/
gcd
(
N
,
p
)
段,每段长度为
gcd(N,p)
g
c
d
(
N
,
p
)
画图可以发现,若p不是N的约数,并且旋转p次以后回文,那么旋转 gcd(N,p) g c d ( N , p ) 次一定是回文的
所以我们只需要考虑p是N的约数的情况
将串分为
N/p
N
/
p
段,每段长度为p
旋转p次就是将第一段挪到最后
分情况讨论
若
N/p
N
/
p
为奇数,那么要求每一段都是相同的一个回文串 (p=3 n=9 121 121 121)
若
N/p
N
/
p
为偶数,那么要求每两段都是相同的一个回文串 (p=3 n=12 122 221 122 221)
直接这样算会算重
因为若旋转 p p 次以后回文,那么旋转的倍数次一定也回文
那么对于每个p,我们要将它的约数减掉
设
F[i]
F
[
i
]
表示刚好旋转i次第一次回文的回文串数,
S[i]
S
[
i
]
表示按照上面讨论算出的旋转i次回文的回文串数(不一定是第一次)
F[i]=S[i]−∑d|i and d≠iF[d]
F
[
i
]
=
S
[
i
]
−
∑
d
|
i
a
n
d
d
≠
i
F
[
d
]
将N的约数求出来,递推一下就好了
Solution
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;++i)
#define fod(i,a,b) for(int i=a;i>=b;--i)
#define mo 1000000007
#define LL long long
using namespace std;
LL ksm(LL k,LL n)
{
LL s=1;
for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo;
return s;
}
int pi[100005];
LL f[100005];
int main()
{
LL n,m;
cin>>n>>m;
fo(i,1,sqrt(n))
{
if(n%i==0)
{
pi[++pi[0]]=i;
if(n%(n/i)==0&&n/i!=i) pi[++pi[0]]=n/i;
}
}
LL ans=0;
sort(pi+1,pi+pi[0]+1);
fo(i,1,pi[0])
{
if(n/pi[i]%2==0)
{
f[i]=ksm(m,pi[i]);
}
else
{
f[i]=ksm(m,(pi[i]+1)/2);
}
fo(j,1,i-1) if(pi[i]%pi[j]==0) f[i]=(f[i]-f[j]+mo)%mo;
ans=(ans+f[i]*pi[i])%mo;
}
printf("%lld\n",ans);
}