[AtCoder Regular Contest 064] F: Rotated Palindrome (arc064F)

原题链接
https://arc064.contest.atcoder.jp/tasks/arc064_d

Description

给出N,M<=1e9
求有多少个长度为N,每个字符为1~M的一个数的字符串,满足该串旋转若干次后可以得到一个回文串(旋转定义为第一个字符放到最后一个位置)

Solution

考虑每个回文串的贡献

假设一个回文串旋转p次之后第一次又回文了,那么这个串对答案的贡献就是p

考虑求旋转p次后第一次又回文的回文串个数
将串分为 N/gcd(N,p) N / gcd ( N , p ) 段,每段长度为 gcd(N,p) g c d ( N , p )

画图可以发现,若p不是N的约数,并且旋转p次以后回文,那么旋转 gcd(N,p) g c d ( N , p ) 次一定是回文的

所以我们只需要考虑p是N的约数的情况

将串分为 N/p N / p 段,每段长度为p
旋转p次就是将第一段挪到最后

分情况讨论
N/p N / p 为奇数,那么要求每一段都是相同的一个回文串 (p=3 n=9 121 121 121)
N/p N / p 为偶数,那么要求每两段都是相同的一个回文串 (p=3 n=12 122 221 122 221)

直接这样算会算重

因为若旋转 p p 次以后回文,那么旋转p的倍数次一定也回文

那么对于每个p,我们要将它的约数减掉

F[i] F [ i ] 表示刚好旋转i次第一次回文的回文串数, S[i] S [ i ] 表示按照上面讨论算出的旋转i次回文的回文串数(不一定是第一次)
F[i]=S[i]d|i and diF[d] F [ i ] = S [ i ] − ∑ d | i   a n d   d ≠ i F [ d ]

将N的约数求出来,递推一下就好了

Solution

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;++i)
#define fod(i,a,b) for(int i=a;i>=b;--i)
#define mo 1000000007
#define LL long long
using namespace std;
LL ksm(LL k,LL n)
{
    LL s=1;
    for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo;
    return s;
}
int pi[100005];
LL f[100005];
int main()
{
    LL n,m;
    cin>>n>>m;
    fo(i,1,sqrt(n)) 
    {
        if(n%i==0) 
        {
            pi[++pi[0]]=i;
            if(n%(n/i)==0&&n/i!=i) pi[++pi[0]]=n/i;
        }
    }
    LL ans=0;
    sort(pi+1,pi+pi[0]+1);
    fo(i,1,pi[0])
    {
        if(n/pi[i]%2==0)
        {
            f[i]=ksm(m,pi[i]);
        }
        else
        {
            f[i]=ksm(m,(pi[i]+1)/2);
        }
        fo(j,1,i-1) if(pi[i]%pi[j]==0) f[i]=(f[i]-f[j]+mo)%mo;
        ans=(ans+f[i]*pi[i])%mo;
    }
    printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值