ARC 064F Rotated Palindromes DP(回文移位,循环节)

题意:给出n,k.问有多少个长度为n的序列a满足:1<=a[i]<=k,并且序列a经过若干次循环左移能变成回文.
i.e:1,1,2,2 左移一次-> 1,2,2,1. n,k<=1e9.

不考虑移位总共有k^(n/2)个回文,每个都可以操作n次,得到n个合法序列.如何去掉重复的?

回文串的循环节肯定为回文.按照回文串的最小循环节长度来更新答案

若回文串的最小循环节长度为c,经过c次操作后,得到c个序列
当c为偶数时,重复数为一半,奇数时,无重复 

设dp[x]为最小循环节长度为v[x]时有多少个回文序列.存在循环节为v[x]的序列有k^(v[x]/2)个
v[x]/2个任意 其中可能存在更小的循环节 DP时记得扣掉v[x]的约数

1e9内因子数大约为2000,O(d^2(n))

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int N=2e5+20;
vector<ll> v;
ll n,k,dp[2500];
ll powmod(ll x,ll n)
{
	ll s=1;
	while(n)
	{
		if(n&1)
			s=(s*x)%mod;
		n>>=1;
		x=(x*x)%mod;
	}
	return s;
}
void init()
{
	v.clear();
	for(ll i=1;i*i<=n;i++)
	{
		if(n%i==0)
		{
			v.push_back(i);
			if(i*i!=n)
				v.push_back(n/i);
		}
	}
	sort(v.begin(),v.end());
}
int main()
{
	while(cin>>n>>k)
	{
		init();
		ll ans=0;
		for(int x=0;x<v.size();x++)
		{
			dp[x]=powmod(k,(v[x]+1)/2);
			for(int y=0;y<x;y++)
			{
				if(v[x]%v[y]==0)
					dp[x]=(dp[x]-dp[y]+mod)%mod;	
			}	
			if(v[x]%2)
				ans=(ans+(dp[x]*v[x])%mod)%mod;
			else
				ans=(ans+(dp[x]*v[x]/2)%mod)%mod;
		}
		cout<<ans<<endl;
	}
	return 0;
}

回文串的最小循环节长度为c 循环移位后最多得到c个不同序列.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值