问题描述:
兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入格式
输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出格式
输出数据为两个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出
1 3
样例输入
3 3
0 0 0
1 1 1
1 1 1
1 1 U 6
0 0 0
1 1 1
1 1 1
1 1 U 6
样例输出
0 0
emmmm,不要看题目那么长,其实这是一个比较简单的题目,不信看代码
。

因为这是第一篇博文,不知道发什么,刚好在备战蓝桥杯决赛,所以发个算法水题为了熟悉一下怎么用这些功能,可能解法不算完美(解法仅供参考),但是通俗易懂,有点基础的人应该能很快理解,该有的注释都有了,好了,反正这就是一个水题,emmmm。
类似的题目还有:机器人行走(自行百度吧)
话不多说,直接上代码:
#include<stdio.h>
int main(){
int m,n;
int i,j;
int x,y; //表示蚂蚁所在行号和列号
char s; //s是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示
int k; //k 表示蚂蚁走的步数。
int a[100][100]; // 0 表示白格,1 表示黑格。
scanf("%d %d",&m,&n);// 3<m,n<100
for(i=0;i<m;i++){
for(j=0;j<n;j++){
scanf("%d",&a[i][j]);
}
}
scanf("%d %d %c %d",&x,&y,&s,&k);
while(k--){
if(a[x][y]){//如果是黑格子
a[x][y]=0;//将该格改为白格
switch(s){//右转90度,并向前移一格
case 'U':{s='R';y++;break;}//上边右转90度变为右边,下面的道理一样
case 'D':{s='L';y--;break;}
case 'L':{s='U';x--;break;}
case 'R':{s='D';x++;break;}
}
}
else{//如果是白格子
a[x][y]=1;// 将该格改为黑格
switch(s){//左转90度,并向前移一格
case 'U':{s='L';y--;break;}
case 'D':{s='R';y++;break;}
case 'L':{s='D';x++;break;}
case 'R':{s='U';x--;break;}
}
}
}
printf("%d %d",x,y);
return 0;
}