题目参照航电oj题目,刚看这道题,还想着用并查集来做,就是给图中每一个有@的地方初始化它的根为m*i+j,然后遍历每一个含@的点,同时把与它相邻的@的点与它做一个合并。做完合并之后在遍历统计根的数量,这样做不过是101*101*3,实现起来麻烦一些,代码的可读性也没那么好。
后来一查才发现可以用递归,这样将相邻的点练成一个块的算法也有一个专有的名词,叫做Flood Fill,它常作为某些算法的预处理使用。这道题同时还可以用广度优先搜索来实现,即把下面的dfs()函数,改为先把找到的第一个@入队,然后在while循环里面出队,把相邻的点入队,然后再不停地出队,直到无法拓展为止。只不过还是没有递归那么精简,不过,需要注意的是,如果递归的层数太深,很可能造成栈溢出。具体的递归代码如下:
#include <iostream>
using namespace std;
char map[101][101];
bool mark[101][101];
int go[][2] = {
0, 1,
0, -1,
1, 0,
-1, 0,
1, 1,
1, -1,
-1, 1,
-1, -1
};
int m, n;
bool islegal(int x, int y){
if(x<=0 || y<=0){
return false;
}
if(x>m || y>n){
return false;
}
if(map[x][y]!='@' || mark[x][y]!=false){
return false;
}
return true;
}
void dfs(int x, int y){
mark[x][y] = true;
for(int i=0; i<8; i++){
if(islegal(x+go[i][0], y+go[i][1])){
dfs(x+go[i][0], y+go[i][1]);
}
}
}
int main(){
while(cin>>m>>n){
if(m==0 || n==0){
break;
}
for(int i=1; i<=m; i++){
for(int j=1; j<=n; j++){
cin>>map[i][j];
mark[i][j] = false;
}
}
int cnt = 0;
for(int x=1; x<=m; x++){ //error:用1起下标的时候最容易出错,容易起成x<m,y<n。
for(int y=1; y<=n; y++){
if(map[x][y] == '@' && mark[x][y] == false){
dfs(x, y);
cnt++;
}
}
}
cout<<cnt<<endl;
}
return 0;
}