迪杰特斯拉算法-最短路径问题(浙大计算机机试题)

本文讲述了使用迪杰特斯拉算法解决起点到终点的最短路径问题,该问题来源于浙江大学计算机试题。在实现过程中,作者发现了代码中的四个错误,并分享了修正后的代码和算法的效率分析。同时,强调了在比较和更新节点时需要注意的符号优先级,并指出迪杰特斯拉算法不适用于含有负权值的情况。Floyd算法作为对比,虽然可以处理负权但不能有负环,且在节点数量较大时可能超时。
摘要由CSDN通过智能技术生成

    今天写了一道可以用迪杰特斯拉算法实现的题目,题目如下:

    给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的,写的代码如下,但是一直不通过。

#include <iostream>
#include <vector>
using namespace std;
#define N 1001

struct Edge{
    int next;
    int d;
    int p;
};

bool mark[N]; //表示该顶点是否被加入集合K。
int dis[N]; //如果该顶点在集合K内,dis表示s到该顶点的最短路径。否则,表示仅有集合K中的点到该顶点的最短路径。
int cost[N]; //如果该顶点在集合K内,cost表示s到该顶点的开销。否则,表示仅有集合K中的点到该顶点的最短路径。
vector<Edge> edge[N];  //定义N个Edge类型的动态数组,用来存储顶点的每条边。

int main(){
    int n, m;
    while(cin>>n>>m){  //录入顶点数n和边数m
        if(n==0 || m==0){ //如果n和m都为0,则退出。
            break;
        }
        for(int i=1; i<=n; i++){ //对定义的存储边的数组进行清空,初始化。
            edge[i].clear();
        }
        while(m--){ //之后开始录入各个边。
            Edge tmp; //先开一个Edge类型的tmp把
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值