今天写了一道可以用迪杰特斯拉算法实现的题目,题目如下:
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的,写的代码如下,但是一直不通过。
#include <iostream>
#include <vector>
using namespace std;
#define N 1001
struct Edge{
int next;
int d;
int p;
};
bool mark[N]; //表示该顶点是否被加入集合K。
int dis[N]; //如果该顶点在集合K内,dis表示s到该顶点的最短路径。否则,表示仅有集合K中的点到该顶点的最短路径。
int cost[N]; //如果该顶点在集合K内,cost表示s到该顶点的开销。否则,表示仅有集合K中的点到该顶点的最短路径。
vector<Edge> edge[N]; //定义N个Edge类型的动态数组,用来存储顶点的每条边。
int main(){
int n, m;
while(cin>>n>>m){ //录入顶点数n和边数m
if(n==0 || m==0){ //如果n和m都为0,则退出。
break;
}
for(int i=1; i<=n; i++){ //对定义的存储边的数组进行清空,初始化。
edge[i].clear();
}
while(m--){ //之后开始录入各个边。
Edge tmp; //先开一个Edge类型的tmp把