Fibonacci数相关

一.Fibonacci数的定义.

Fibonacci数:Fibonacci数 f n f_n fn定义为初值为 f 0 = 0 , f 1 = 1 f_0=0,f_1=1 f0=0,f1=1且在 n > 1 n>1 n>1时递推公式为 f n = f n − 1 + f n − 2 f_n=f_{n-1}+f_{n-2} fn=fn1+fn2的数列.

这个数的组合意义可以理解为一个 1 ∗ ( n − 1 ) 1*(n-1) 1(n1)的空间用 1 ∗ 1 1*1 11 1 ∗ 2 1*2 12的砖块填满的方案数.


二.Fibonacci数通项公式.

可以直接用特征方程来求解Fibonacci数列的通项公式,这里仅给出其公式:
f n = 1 5 ( 1 + 5 2 ) n − 1 5 ( 1 − 5 2 ) n f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} fn=5 1(21+5 )n5 1(215 )n



三.Fibonacci数的若干性质.

性质1 ∑ i = 0 n f i = f n + 2 − 1 \sum_{i=0}^{n}f_i=f_{n+2}-1 i=0nfi=fn+21.

证明:
考虑数学归纳法:
1. n = 0 n=0 n=0时性质显然成立.
2.当满足 n > 0 n>0 n>0时,假设 k < n k<n k<n时均满足性质,则 k = n k=n k=n时:
∑ i = 0 k f i = f k + ∑ i = 0 k − 1 f i = f k + f k + 1 − 1 = f k + 2 − 1 \sum_{i=0}^{k}f_i=f_k+\sum_{i=0}^{k-1}f_i\\ =f_k+f_{k+1}-1\\ =f_{k+2}-1 i=0kfi=fk+i=0k1fi=fk+fk+11=fk+21

证毕.

性质2:当且仅当 3 ∣ n 3|n 3n f n f_n fn为偶数.

证明:
显然 n ≤ 2 n\leq 2 n2时性质成立.
那么对于 n > 2 n>2 n>2,有三种情况:
1. f 3 k = f 3 k − 2 + f 3 k − 1 f_{3k}=f_{3k-2}+f_{3k-1} f3k=f3k2+f3k1,奇 + + + = = =偶.
2. f 3 k + 1 = f 3 k − 1 + f 3 k f_{3k+1}=f_{3k-1}+f_{3k} f3k+1=f3k1+f3k,奇 + + + = = =奇.
2. f 3 k + 2 = f 3 k + f 3 k + 1 f_{3k+2}=f_{3k}+f_{3k+1} f3k+2=f3k+f3k+1,偶 + + + = = =奇.
证毕.

性质3 ∑ i = 1 n f 2 i − 1 = f 2 n \sum_{i=1}^{n}f_{2i-1}=f_{2n} i=1nf2i1=f2n.

性质4 ∑ i = 1 n f 2 i = f 2 n + 1 − 1 \sum_{i=1}^{n}f_{2i}=f_{2n+1}-1 i=1nf2i=f2n+11.

性质3,4均可类比性质1用数学归纳法证明.

根据性质3,4还可以求出 ∑ i = 1 n ( − 1 ) i f i \sum_{i=1}^{n}(-1)^{i}f_{i} i=1n(1)ifi.

性质5 ∑ i = 0 n f i 2 = f n f n + 1 \sum_{i=0}^{n}f_i^2=f_{n}f_{n+1} i=0nfi2=fnfn+1.

证明:
考虑数学归纳法:
1. n = 0 n=0 n=0时性质显然成立.
2.当 n > 0 n>0 n>0时,若 k < n k<n k<n时性质成立,则 k = n k=n k=n时有:
∑ i = 0 n f i 2 = f n 2 + ∑ i = 0 n − 1 f i 2 = f n 2 + f n f n − 1 = f n ( f n + f n − 1 ) = f n f n + 1 \sum_{i=0}^{n}f_i^2=f_n^2+\sum_{i=0}^{n-1}f_i^2\\ =f_n^2+f_{n}f_{n-1}\\ =f_n(f_{n}+f_{n-1})\\ =f_nf_{n+1} i=0nfi2=fn2+i=0n1fi2=fn2+fnfn1=fn(fn+fn1)=fnfn+1

证毕.

性质6 m ∣ n ⇒ f m ∣ f n m|n\Rightarrow f_m|f_n mnfmfn.

证明:
为了证明这个性质,我们先给出一个引理.
引理1 f n + m = f n − 1 f m + f n f m + 1 f_{n+m}=f_{n-1}f_{m}+f_{n}f_{m+1} fn+m=fn1fm+fnfm+1.
证明:
考虑数学归纳法:
1. n = 0 , 1 , 2 n=0,1,2 n=0,1,2时引理显然成立.
2.当 n > 1 n>1 n>1时,若 k < n k<n k<n时引理成立,则 k = n k=n k=n时有:
f m + k = f m + k − 2 + f m + k − 1 = f k − 3 f m + f k − 2 f m + 1 + f k − 2 f m + f k − 1 f m + 1 = ( f k − 3 + f k − 2 ) f m + ( f k − 2 + f k − 1 ) f m + 1 = f k − 1 f m + f k f m + 1 f_{m+k}=f_{m+k-2}+f_{m+k-1}\\ =f_{k-3}f_{m}+f_{k-2}f_{m+1}+f_{k-2}f_{m}+f_{k-1}f_{m+1}\\ =(f_{k-3}+f_{k-2})f_{m}+(f_{k-2}+f_{k-1})f_{m+1}\\ =f_{k-1}f_m+f_{k}f_{m+1} fm+k=fm+k2+fm+k1=fk3fm+fk2fm+1+fk2fm+fk1fm+1=(fk3+fk2)fm+(fk2+fk1)fm+1=fk1fm+fkfm+1

证毕.

n = k m n=km n=km,考虑数学归纳法:
1.显然 k = 0 , 1 k=0,1 k=0,1时性质成立.
2.当 k > 1 k>1 k>1时,若 t < k t<k t<k时性质成立,则 t = k t=k t=k时用引理1拆开 f t m f_{tm} ftm
f t m = f m + ( t − 1 ) m = f m − 1 f ( t − 1 ) m + f m f ( t − 1 ) m + 1 f_{tm}=f_{m+(t-1)m}=f_{m-1}f_{(t-1)m}+f_{m}f_{(t-1)m+1} ftm=fm+(t1)m=fm1f(t1)m+fmf(t1)m+1

然后开始推导:
∵ f m ∣ f m \because f_{m}|f_{m} fmfm f m ∣ f ( t − 1 ) m f_{m}|f_{(t-1)m} fmf(t1)m
∴ f m ∣ f m − 1 f ( t − 1 ) m , f m ∣ f m f ( t − 1 ) m + 1 \therefore f_{m}|f_{m-1}f_{(t-1)m},f{m}|f_{m}f_{(t-1)m+1} fmfm1f(t1)m,fmfmf(t1)m+1
∴ f m ∣ f m − 1 f ( t − 1 ) m + f m ∣ f m f ( t − 1 ) m + 1 \therefore f_{m}|f_{m-1}f_{(t-1)m}+f{m}|f_{m}f_{(t-1)m+1} fmfm1f(t1)m+fmfmf(t1)m+1
∴ f m ∣ f t m \therefore f_{m}|f_{tm} fmftm
证毕.

性质7 g c d ( f n , f m ) = f g c d ( n , m ) gcd(f_n,f_m)=f_{gcd(n,m)} gcd(fn,fm)=fgcd(n,m).

证明:
假设 n < m n<m n<m,根据引理1拆开 f m f_m fm
f m = f n + m − n = f n − 1 f m − n + f n f m − n + 1 f_m=f_{n+m-n}=f_{n-1}f_{m-n}+f_{n}f_{m-n+1} fm=fn+mn=fn1fmn+fnfmn+1

由于 f n ∣ f n f m − n + 1 f_n|f_{n}f_{m-n+1} fnfnfmn+1,所以我们有:
g c d ( f n , f m ) = g c d ( f n , f n − 1 f m − n ) gcd(f_n,f_m)=gcd(f_n,f_{n-1}f_{m-n}) gcd(fn,fm)=gcd(fn,fn1fmn)

接下来我们给出一个引理.
引理2 g c d ( f n , f n − 1 ) = 1 gcd(f_n,f_{n-1})=1 gcd(fn,fn1)=1.
证明:
g c d ( f n , f n − 1 ) = g c d ( f n − f n − 1 , f n − 1 ) = g c d ( f n − 1 , f n − 2 ) = g c d ( f n − 1 − f n − 2 , f n − 2 ) = g c d ( f n − 2 , f n − 3 ) ⋯ = g c d ( f 1 , f 0 ) = g c d ( 1 , 0 ) = 1 gcd(f_n,f_{n-1})=gcd(f_n-f_{n-1},f_{n-1})\\ =gcd(f_{n-1},f_{n-2})\\ =gcd(f_{n-1}-f_{n-2},f_{n-2})\\ =gcd(f_{n-2},f_{n-3})\\ \cdots\\ =gcd(f_{1},f_{0})\\ =gcd(1,0)\\ =1 gcd(fn,fn1)=gcd(fnfn1,fn1)=gcd(fn1,fn2)=gcd(fn1fn2,fn2)=gcd(fn2,fn3)=gcd(f1,f0)=gcd(1,0)=1

证毕.
然后我们就有:
g c d ( f n , f m ) = g c d ( f n , f m − n ) = g c d ( f n , f m    m o d    n ) gcd(f_n,f_m)=gcd(f_n,f_{m-n})=gcd(f_n,f_{m\,\,mod\,\,n}) gcd(fn,fm)=gcd(fn,fmn)=gcd(fn,fmmodn)

发现这个形式与辗转相除法十分类似,于是就有:
g c d ( f n , f m ) = g c d ( f g c d ( n , m ) , f 0 ) = f g c d ( n , m ) gcd(f_n,f_m)=gcd(f_{gcd(n,m)},f_0)=f_{gcd(n,m)} gcd(fn,fm)=gcd(fgcd(n,m),f0)=fgcd(n,m)

证毕.

根据性质7,我们还可以推出性质6的逆定理,即 f m ∣ f n ⇒ m ∣ n f_m|f_n\Rightarrow m|n fmfnmn.


四.Fibonacci数与组合数.

Fibonacci数列和组合数之间有一个神奇的关系式
f n = ∑ i = 0 n − 1 ( n − i − 1 i ) f_n=\sum_{i=0}^{n-1}\binom{n-i-1}{i} fn=i=0n1(ini1)

证明:
g n = ∑ i = 0 n − 1 ( n − i + 1 i ) g_n=\sum_{i=0}^{n-1}\binom{n-i+1}{i} gn=i=0n1(ini+1),考虑证明 g i = f i g_i=f_i gi=fi.
考虑数学归纳法:
1. n = 0 , 1 , 2 n=0,1,2 n=0,1,2时显然成立.
2.当 n > 2 n>2 n>2时,若 k < n k<n k<n时成立,则 k = n k=n k=n时有:
g k − 1 + g k − 2 = ∑ i = 0 k − 2 ( k − i − 2 i ) + ∑ i = 0 k − 3 ( k − i − 3 i ) = ( k − 2 0 ) + ∑ i = 1 k − 2 ( k − i − 2 i ) + ∑ i = 1 k − 2 ( k − i − 2 i − 1 ) = ( k − 2 0 ) + ∑ i = 1 k − 2 ( ( k − i − 2 i ) + ( k − i − 2 i − 1 ) ) = ( k − 2 0 ) + ∑ i = 1 k − 2 ( k − i − 1 i ) = ( k − 1 0 ) + ( 0 k − 1 ) + ∑ i = 1 k − 2 ( k − i − 1 i ) = ∑ i = 0 k − 1 ( k − i − 1 i ) = g k g_{k-1}+g_{k-2}=\sum_{i=0}^{k-2}\binom{k-i-2}{i}+\sum_{i=0}^{k-3}\binom{k-i-3}{i}\\ =\binom{k-2}{0}+\sum_{i=1}^{k-2}\binom{k-i-2}{i}+\sum_{i=1}^{k-2}\binom{k-i-2}{i-1}\\ =\binom{k-2}{0}+\sum_{i=1}^{k-2}\left(\binom{k-i-2}{i}+\binom{k-i-2}{i-1}\right)\\ =\binom{k-2}{0}+\sum_{i=1}^{k-2}\binom{k-i-1}{i}\\ =\binom{k-1}{0}+\binom{0}{k-1}+\sum_{i=1}^{k-2}\binom{k-i-1}{i}\\ =\sum_{i=0}^{k-1}\binom{k-i-1}{i}\\ =g_k gk1+gk2=i=0k2(iki2)+i=0k3(iki3)=(0k2)+i=1k2(iki2)+i=1k2(i1ki2)=(0k2)+i=1k2((iki2)+(i1ki2))=(0k2)+i=1k2(iki1)=(0k1)+(k10)+i=1k2(iki1)=i=0k1(iki1)=gk

证毕.


五.Fibonacci数与黄金分割比.

黄金分割点:定义一条长度为 1 1 1的线段的黄金分割点为一个距离 x x x满足 x 2 = x ( 1 − x ) x^2=x(1-x) x2=x(1x).

显然这个 x = 5 − 1 2 x=\frac{\sqrt{5}-1}{2} x=25 1.

黄金分割比:定义黄金分割比为上述 x x x 1 1 1的比值,即为 x ≈ 0.618 x\approx 0.618 x0.618.

然后我们将Fibonacci数的第 n n n项与第 n + 1 n+1 n+1项比一下,发现这个东西越来越接近黄金分割比了.

也就是说会有这样一个式子:
lim ⁡ n → + ∞ f n f n + 1 = 5 − 1 2 \lim_{n\rightarrow +\infty}\frac{f_n}{f_{n+1}}=\frac{\sqrt{5}-1}{2} n+limfn+1fn=25 1

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Fibonacci程序设计 目 录 一.课程设计任务书•••••••••••••••••••••••••••••••••••••••••••••••••••••2 二.正文••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••3 1.设计目的、设计内容、时间安排•••••••••••••••••••••••••••••••••••3 2.设计环境与与工具•••••••••••••••••••••••••••••••••••••••••••••••••3 3.程序设计算法说明、流程图••••••••••••••••••••••••••••••••••••••••3 4.源程序清单••••••••••••••••••••••••••••••••••••••••••••••••••••••••5 5.运行结果记录••••••••••••••••••••••••••••••••••••••••••••••••••••••8 6. 设计结果分析•••••••••••••••••••••••••••••••••••••••••••••••••••••••8 7.参考文献及其他••••••••••••••••••••••••••••••••••••••••••••••••••••8 三.评分表•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••9 四.封底••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值