一.等差与等比数列.
等差数列:以下数列被称为等差数列:
f
n
=
a
+
f
n
−
1
f_n=a+f_{n-1}
fn=a+fn−1
这个数列的通项公式为:
f
n
=
f
0
+
n
a
f_{n}=f_{0}+na
fn=f0+na
设
s
n
=
∑
i
=
0
n
f
i
s_{n}=\sum_{i=0}^{n}f_{i}
sn=∑i=0nfi,则有:
s
n
=
(
n
+
1
)
f
0
+
a
n
(
n
+
1
)
2
s_{n}=(n+1)f_{0}+a\frac{n(n+1)}{2}
sn=(n+1)f0+a2n(n+1)
这个公式是通过将 f i f_{i} fi和 f n − i + 1 f_{n-i+1} fn−i+1配起来得到的.
等比数列:以下数列被称为等比数列:
f
n
=
a
f
n
−
1
f_{n}=af_{n-1}
fn=afn−1
这个数列的通项公式为:
f
n
=
a
n
f
0
f_{n}=a^{n}f_{0}
fn=anf0
设
s
n
=
∑
i
=
0
n
f
i
s_{n}=\sum_{i=0}^{n}f_{i}
sn=∑i=0nfi,则有:
s
n
=
f
0
1
−
a
n
+
1
1
−
a
s_{n}=f_0\frac{1-a^{n+1}}{1-a}
sn=f01−a1−an+1
这个公式可以用错位相减法得到,具体过程如下:
s
n
=
∑
i
=
0
n
f
i
=
∑
i
=
0
n
f
i
+
1
−
f
i
a
−
1
=
1
a
−
1
∑
i
=
0
n
(
f
i
+
1
−
f
i
)
=
1
a
−
1
(
f
1
−
f
0
+
f
2
−
f
1
+
⋯
+
f
n
+
1
−
f
n
)
=
f
n
+
1
−
f
0
a
−
1
=
f
0
1
−
a
n
+
1
1
−
a
s_{n}=\sum_{i=0}^{n}f_i\\ =\sum_{i=0}^{n}\frac{f_{i+1}-f_{i}}{a-1}\\ =\frac{1}{a-1}\sum_{i=0}^{n}(f_{i+1}-f_{i})\\ =\frac{1}{a-1}(f_{1}-f_{0}+f_{2}-f_{1}+\cdots+f_{n+1}-f_{n})\\ =\frac{f_{n+1}-f_{0}}{a-1}\\ =f_{0}\frac{1-a^{n+1}}{1-a}
sn=i=0∑nfi=i=0∑na−1fi+1−fi=a−11i=0∑n(fi+1−fi)=a−11(f1−f0+f2−f1+⋯+fn+1−fn)=a−1fn+1−f0=f01−a1−an+1
将数列转化为等比数列是求数列通项公式的一个重要方法.
二.等比数列求解数列通项式的应用.
考虑一类一阶的递推数列:
f
n
=
a
f
n
−
1
+
b
(
a
≠
1
)
f_{n}=af_{n-1}+b\,\,(a\neq 1)
fn=afn−1+b(a=1)
先假设存在一个
t
t
t满足:
f
n
=
a
f
n
−
1
+
(
a
−
1
)
t
f_{n}=af_{n-1}+(a-1)t
fn=afn−1+(a−1)t
那么有:
f
n
+
t
=
a
(
f
n
−
1
+
t
)
f_{n}+t=a(f_{n-1}+t)
fn+t=a(fn−1+t)
这时就可以让
b
=
(
a
−
1
)
t
b=(a-1)t
b=(a−1)t,有:
f
n
+
1
+
b
a
−
1
=
a
(
f
n
+
b
a
−
1
)
f_{n+1}+\frac{b}{a-1}=a\left(f_{n}+\frac{b}{a-1}\right)
fn+1+a−1b=a(fn+a−1b)
此时我们知道了数列 g n = f n + b a − 1 g_n=f_{n}+\frac{b}{a-1} gn=fn+a−1b是一个等比数列了.
根据等比数列通项公式有:
f
n
+
b
a
−
1
=
a
n
(
f
0
+
b
a
−
1
)
f
n
=
a
n
f
0
+
b
1
−
a
n
1
−
a
f_{n}+\frac{b}{a-1}=a^{n}\left(f_{0}+\frac{b}{a-1}\right)\\ f_{n}=a^nf_0+b\frac{1-a^{n}}{1-a}
fn+a−1b=an(f0+a−1b)fn=anf0+b1−a1−an
三.特征方程求解数列通项式.
其实特征方程是线性代数里的一个东西,不过这里我们先介绍求解二阶递推式的特征方程.
仿照上面的方式,我们来求一求一类二阶递推数列的通项公式:
f
n
+
1
=
a
f
n
+
b
f
n
−
1
f_{n+1}=af_{n}+bf_{n-1}
fn+1=afn+bfn−1
假设存在
t
t
t满足:
f
n
+
1
+
t
f
n
=
c
(
f
n
+
t
f
n
−
1
)
f_{n+1}+tf_{n}=c(f_{n}+tf_{n-1})
fn+1+tfn=c(fn+tfn−1)
那么有:
f
n
+
1
=
(
c
−
t
)
f
n
+
c
t
f
n
−
1
f_{n+1}=(c-t)f_{n}+ctf_{n-1}
fn+1=(c−t)fn+ctfn−1
转化为:
{
c
−
t
=
a
c
t
=
b
\left\{\begin{matrix} c-t=a\\ ct=b \end{matrix}\right.
{c−t=act=b
消去
t
t
t,则有:
c
2
−
a
c
−
b
=
0
c^{2}-ac-b=0\\
c2−ac−b=0
这就是所谓的特征方程.
若这个特征方程的两根不同,根据等比数列通项公式就有:
f
n
+
1
+
t
1
f
n
=
c
1
n
(
f
1
+
t
1
f
0
)
f
n
+
1
+
t
2
f
n
=
c
2
n
(
f
1
+
t
2
f
0
)
f_{n+1}+t_1f_{n}=c_{1}^{n}(f_{1}+t_1f_{0})\\ f_{n+1}+t_2f_{n}=c_{2}^{n}(f_{1}+t_2f_{0})
fn+1+t1fn=c1n(f1+t1f0)fn+1+t2fn=c2n(f1+t2f0)
消去
f
n
+
1
f_{n+1}
fn+1得:
f
n
=
c
1
n
f
1
+
t
1
f
0
t
1
−
t
2
−
c
2
n
f
1
+
t
2
f
0
t
1
−
t
2
f_{n}=c_{1}^{n}\frac{f_1+t_{1}f_0}{t_1-t_2}-c_{2}^{n}\frac{f_{1}+t_2f_{0}}{t_{1}-t_{2}}
fn=c1nt1−t2f1+t1f0−c2nt1−t2f1+t2f0
否则特征方程的两个解相同,那么
c
=
a
2
c=\frac{a}{2}
c=2a,此时有:
t
=
−
a
2
=
−
c
t=-\frac{a}{2}=-c
t=−2a=−c
接下来我们开始操作:
f
n
+
1
c
n
+
1
−
f
n
c
n
=
f
n
+
1
−
c
f
n
c
n
+
1
=
f
n
+
1
+
t
f
n
c
n
+
1
=
f
n
+
t
f
n
−
1
c
n
=
⋯
=
f
1
+
t
f
0
c
=
f
1
−
c
f
0
c
\frac{f_{n+1}}{c^{n+1}}-\frac{f_{n}}{c^{n}}=\frac{f_{n+1}-cf_{n}}{c^{n+1}}=\frac{f_{n+1}+tf_{n}}{c^{n+1}}=\frac{f_{n}+tf_{n-1}}{c^{n}}=\cdots=\frac{f_{1}+tf_{0}}{c}=\frac{f_{1}-cf_{0}}{c}
cn+1fn+1−cnfn=cn+1fn+1−cfn=cn+1fn+1+tfn=cnfn+tfn−1=⋯=cf1+tf0=cf1−cf0
故 g n = f n c n g_{n}=\frac{f_{n}}{c^{n}} gn=cnfn必然是一个等差数列.
那么根据等差数列通项公式有:
f
n
=
c
n
(
f
0
+
n
f
1
+
t
f
0
c
)
f_{n}=c^{n}\left(f_{0}+n\frac{f_1+tf_0}{c}\right)
fn=cn(f0+ncf1+tf0)
于是接下来我们可以总结,对于一个递推数列满足
f
n
=
a
f
n
−
1
+
b
f
n
−
2
f_{n}=af_{n-1}+bf_{n-2}
fn=afn−1+bfn−2,若其特征方程
x
2
=
a
x
+
b
x^{2}=ax+b
x2=ax+b的解为
c
1
,
c
2
c_1,c_2
c1,c2,则有:
1.
c
1
≠
c
2
c_1\neq c_2
c1=c2时,存在
t
1
,
t
2
t_1,t_2
t1,t2满足
f
n
=
c
1
n
t
1
−
c
2
n
t
2
f_{n}=c_1^{n}t_1-c_2^{n}t_2
fn=c1nt1−c2nt2.
2.
c
1
=
c
2
c_1=c_2
c1=c2时,存在
t
1
,
t
2
t_1,t_2
t1,t2满足
f
n
=
c
n
(
t
1
+
n
t
2
)
f_{n}=c^{n}(t_1+nt_2)
fn=cn(t1+nt2).
其中 t 1 , t 2 t_1,t_2 t1,t2均可通过初项确定.
特征方程求解数列通项式的一个经典例子是Fibonacci数列,即 f 0 = 0 , f 1 = 1 , f n = f n − 1 + f n − 2 f_0=0,f_1=1,f_n=f_{n-1}+f_{n-2} f0=0,f1=1,fn=fn−1+fn−2.
列出其特征方程:
x
2
−
x
−
1
=
0
x^{2}-x-1=0
x2−x−1=0
解得:
x
=
1
±
5
2
x=\frac{1\pm \sqrt{5}}{2}
x=21±5
根据上面的结论,直接设
t
1
,
t
2
t_1,t_2
t1,t2使得:
f
n
=
t
1
(
1
+
5
2
)
n
−
t
2
(
1
−
5
2
)
n
f_{n}=t_1\left(\frac{1+\sqrt{5}}{2}\right)^{n}-t_2\left(\frac{1-\sqrt{5}}{2}\right)^{n}
fn=t1(21+5)n−t2(21−5)n
用
f
0
f_0
f0和
f
1
f_1
f1列出方程得:
{
0
=
t
1
−
t
2
1
=
1
+
5
2
t
1
−
1
−
5
2
t
2
\left\{\begin{matrix} 0=t_1-t_2\\ 1=\frac{1+\sqrt{5}}{2}t_1-\frac{1-\sqrt{5}}{2}t_2 \end{matrix}\right.
{0=t1−t21=21+5t1−21−5t2
解得
t
1
=
t
2
=
5
5
t_1=t_2=\frac{\sqrt{5}}{5}
t1=t2=55,Fibonacci数列的通项公式即为:
f
n
=
1
5
(
1
+
5
2
)
n
−
1
5
(
1
−
5
2
)
n
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
fn=51(21+5)n−51(21−5)n
四.生成函数方法.
生成函数是一类非常通用的组合方法,具体参见生成函数相关.
生成函数求解数列递推式的常见思路是利用递推式列出生成函数关系式,然后解方程并通过各种方法展开.
例如经典的Catalan数列,设Catalan数列为
C
n
C_{n}
Cn,那么有:
C
n
=
∑
i
=
0
n
−
1
C
i
C
n
−
1
−
i
C_n=\sum_{i=0}^{n-1}C_{i}C_{n-1-i}
Cn=i=0∑n−1CiCn−1−i
初始 C 0 = 1 C_{0}=1 C0=1.
设其生成函数为
C
(
x
)
C(x)
C(x),那么我们有:
C
(
x
)
=
x
C
2
(
x
)
+
1
x
C
2
(
x
)
−
C
(
x
)
+
1
C
(
x
)
=
1
±
1
−
4
x
2
x
C(x)=xC^2(x)+1\\ xC^2(x)-C(x)+1\\ C(x)=\frac{1\pm \sqrt{1-4x}}{2x}
C(x)=xC2(x)+1xC2(x)−C(x)+1C(x)=2x1±1−4x
由于
C
(
x
)
C(x)
C(x)的常数项为
1
1
1,所以有
C
(
0
)
=
1
C(0)=1
C(0)=1,利用极限理论对两根验证:
lim
x
→
0
1
+
1
−
4
x
2
x
=
lim
x
→
0
2
2
x
=
+
∞
lim
x
→
0
1
−
1
−
4
x
2
x
=
lim
x
→
0
1
1
−
4
x
=
1
\lim_{x\rightarrow 0}\frac{1+\sqrt{1-4x}}{2x}=\lim_{x\rightarrow 0}\frac{2}{2x}=+\infty\\ \lim_{x\rightarrow 0}\frac{1-\sqrt{1-4x}}{2x}=\lim_{x\rightarrow 0}\frac{1}{\sqrt{1-4x}}=1
x→0lim2x1+1−4x=x→0lim2x2=+∞x→0lim2x1−1−4x=x→0lim1−4x1=1
我们发现取负的时候才是正确的,于是考虑暴力展开:
C
(
x
)
=
1
−
1
−
4
x
2
x
=
1
2
x
−
1
2
x
∑
i
=
0
+
∞
(
1
2
i
)
(
−
1
)
i
(
4
x
)
i
=
1
2
x
∑
i
=
1
+
∞
(
−
1
)
i
−
1
2
2
i
(
1
2
i
)
x
i
C(x)=\frac{1-\sqrt{1-4x}}{2x}\\ =\frac{1}{2x}-\frac{1}{2x}\sum_{i=0}^{+\infty}\binom{\frac{1}{2}}{i}(-1)^{i}(4x)^{i}\\ =\frac{1}{2x}\sum_{i=1}^{+\infty}(-1)^{i-1}2^{2i}\binom{\frac{1}{2}}{i}x^{i}
C(x)=2x1−1−4x=2x1−2x1i=0∑+∞(i21)(−1)i(4x)i=2x1i=1∑+∞(−1)i−122i(i21)xi
考虑求解
(
1
2
n
)
\binom{\frac{1}{2}}{n}
(n21):
(
1
2
n
)
=
(
1
2
)
n
‾
n
!
=
1
n
!
∏
i
=
1
n
(
3
2
−
i
)
=
(
−
1
)
n
−
1
n
!
2
−
n
∏
i
=
1
n
−
1
(
2
i
−
1
)
=
(
−
1
)
n
−
1
n
!
2
−
n
∏
i
=
1
2
n
−
2
i
∏
i
=
1
n
−
1
2
i
=
(
−
1
)
n
−
1
2
1
−
2
n
(
2
n
−
2
)
!
n
!
(
n
−
1
)
!
\binom{\frac{1}{2}}{n}\\ =\frac{\left(\frac{1}{2}\right)^{\underline{n}}}{n!}\\ =\frac{1}{n!}\prod_{i=1}^{n}\left(\frac{3}{2}-i\right)\\ =\frac{(-1)^{n-1}}{n!}2^{-n}\prod_{i=1}^{n-1}(2i-1)\\ =\frac{(-1)^{n-1}}{n!}2^{-n}\frac{\prod_{i=1}^{2n-2}i}{\prod_{i=1}^{n-1}2i}\\ =(-1)^{n-1}2^{1-2n}\frac{(2n-2)!}{n!(n-1)!}
(n21)=n!(21)n=n!1i=1∏n(23−i)=n!(−1)n−12−ni=1∏n−1(2i−1)=n!(−1)n−12−n∏i=1n−12i∏i=12n−2i=(−1)n−121−2nn!(n−1)!(2n−2)!
代入得到:
C
(
x
)
=
1
2
x
∑
i
=
1
+
∞
(
−
1
)
i
−
1
2
2
i
(
−
1
)
i
−
1
2
1
−
2
i
(
2
n
−
2
)
!
i
!
(
i
−
1
)
!
x
i
=
1
x
∑
i
=
1
+
∞
(
2
i
−
2
)
!
i
!
(
i
−
1
)
!
x
i
=
∑
i
=
0
+
∞
(
2
i
)
!
(
i
+
1
)
!
i
!
x
i
=
∑
i
=
0
+
∞
1
i
+
1
(
2
i
i
)
x
i
C(x)=\frac{1}{2x}\sum_{i=1}^{+\infty}(-1)^{i-1}2^{2i}(-1) ^{i-1}2^{1-2i}\frac{(2n-2)!}{i!(i-1)!}x^{i}\\ =\frac{1}{x}\sum_{i=1}^{+\infty}\frac{(2i-2)!}{i!(i-1)!}x^{i}\\ =\sum_{i=0}^{+\infty}\frac{(2i)!}{(i+1)!i!}x^{i}\\ =\sum_{i=0}^{+\infty}\frac{1}{i+1}\binom{2i}{i}x^{i}
C(x)=2x1i=1∑+∞(−1)i−122i(−1)i−121−2ii!(i−1)!(2n−2)!xi=x1i=1∑+∞i!(i−1)!(2i−2)!xi=i=0∑+∞(i+1)!i!(2i)!xi=i=0∑+∞i+11(i2i)xi
即可得到 C n = 1 n + 1 ( 2 n n ) C_{n}=\frac{1}{n+1}\binom{2n}{n} Cn=n+11(n2n).