构造等比数列,求数列通项。

本文介绍了一种使用C语言实现的算法,该算法可以高效地求解形如a(n)=p*a(n-1)+h(n)的线性递推公式,其中h(n)为多项式。通过构造等比数列的方法,可以在O(n^2)时间内完成预处理,进而实现在O(1)时间内查询任意项的值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

突然想起了高中的知识,用c语言实现了一下。
对于形如 a ( n ) = p ∗ a ( n − 1 ) + h ( n ) ( h ( n ) 是 多 项 式 , p ! = 1 ) a(n)=p*a(n-1)+h(n) (h(n)是多项式,p!=1) a(n)=pa(n1)+h(n)(h(n),p!=1)(p==1的话你可以用累加法求)
我们可以构造一个公比为q的等比数列, 达到求通项的目的。详细步骤见链接:别人的知乎回答
我们只需 O(n^2)的时间,就可以实现O(1)时间的查询,这个时间比矩阵快速幂更快,而且你不用去构造关系矩阵,省去了思维时间。

//我这个模板只可以求q为正整数的情况
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
//解a(n)=p*a(n-1)+h(n)  [1] (h(n)是多项式)
//a(n)+c+p1*n+p2*n^2.....=p*(a(n-1)+c+p1*(n-1)+p2*(n-2)^2....)   [2]
//构造的p1,p2,p3..使[1],[2]两式等价 
//这是一个完整的上三角不用高斯消元 
 
const int N=50;
int x[N];
int main(){
	int p,n;
	scanf("%d%d",&p,&n);
	for(int i=0;i<=n;i++)scanf("%d",&x[i]); //次数为i的多次项的系数
	for(int i=n;i>=1;i--){//从最高项开始拆分 
		int temp=1;
		x[i]/=(p-1);
		for(int j=1;j<=i;j++){//j表示-1的个数 
			temp=temp*(i-j+1)/j;//二项式系数 
			//printf("%d\n",temp);
			if(j&1)x[i-j]+=x[i]*p*temp;
			else x[i-j]-=x[i]*p*temp;
		}		
	}
	int a1=1,q,ans,m;
	   /*a1首项初始值可以等于任意数这里默认为1*/
	for(int i=0;i<=n;i++)a1+=x[i];//等比数列首项
	//用公式做出前几项,大家可以去验证一下 
	for(int i=2;i<=10;i++){
		int ai=a1*(int)pow(p,i-1);
		for(int j=0;j<=n;j++)ai-=x[j]*(int)pow(i,j);
		printf("%d ",ai);	
	} 
	//for(int i=0;i<=n;i++)printf("%d ",x[i]);puts("");	
}
<think>好的,我现在需要帮助用户寻找数列公式的方法。用户之前已经询问过相关的问题,现在需要更详细的解答。根据用户提供的引用资料,我需要整合不同的方法,并确保回答结构清晰,符合用户的要。 首先,我应该回顾已有的引用内容。引用[1]提到了不动点法,适用于递推数列,比如线性递推的情况。引用[2]是关于斐波那契数列解,使用了特征方程法。引用[3]提到了使用编程方法(如模板元编程)来在编译时计算数列,但用户可能需要理论方法。引用[4]则涉及和公式,可能和无关,但需要确认。 用户的问题是关于数列公式的计算方法或用公式,所以需要整理常见的解方法。常见的解方法包括:观察法、累加法、累乘法、特征方程法(适用于线性递推)、不动点法(分式递推)、生成函数法、数学归纳法等。需要根据不同的递推形式选择方法。 接下来,我需要参考用户提供的引用内容,尤其是引用[1]的不动点法和引用[2]的特征方程法。例如,斐波那契数列是二阶线性递推,可以用特征方程解,而分式递推可能用不动点法。需要将这些方法详细说明,并给出例子,可能的话使用LaTeX公式展示。 同时,用户要生成相关问题,我需要考虑用户可能的后续问题,比如具体方法的步骤、适用条件,或者与其他方法的比较。例如,用户可能会问特征方程法适用于几阶递推,或者不动点法的具体步骤。 需要确保回答中使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并检查语法正确性。同时,回答结构要清晰,分点列出方法,每个方法下给出步骤和示例,最后生成相关问题。 现在需要组织内容: 1. 观察归纳法:过前几猜测,并用数学归纳法证明。例如等差数列等比数列。 2. 累加累乘法:适用于a_{n+1} - a_n = f(n)或a_{n+1}/a_n = f(n)的形式。 3. 特征方程法:针对线性递推数列,如a_{n+2} = p*a_{n+1} + q*a_n,构建特征方程解根。 4. 不动点法:适用于分式递推,如a_{n+1} = (k*a_n + c)/(m*a_n + d),找到不动点后换元。 5. 生成函数法:构造生成函数,转化为微分方程或代数方程解。 6. 特殊数列参考:如斐波那契数列用特征方程,调和数列已知表达式等。 每个方法需要举例,比如等差数列用观察法,斐波那契用特征方程,分式递推用不动点法,并引用对应的引用资料。例如,引用[1]中的不动点法步骤,引用[2]中的斐波那契例子。 最后生成的问题要围绕这些方法的应用、比较、步骤或具体案例,如如何选择合适的方法,特征方程法的步骤,不动点法的例子等。 需要确保回答正确无误,方法描述准确,例子恰当,并且引用正确。例如,当提到不动点法时,引用[1]中的步骤;提到斐波那契数列时,引用[2]和[3]。 最后检查LaTeX格式是否正确,是否有遗漏的引用,结构是否清晰,问题是否相关。</think>### 数列公式解方法详解 数列公式的解方法需根据递推关系的特点选择,以下是6种常用方法及其适用场景: --- #### 一、观察归纳法 **适用条件**:简单数列或存在明显规律的情况 **步骤**: 1. 列出前若干 2. 观察规律猜测 3. 数学归纳法验证 **示例**: 数列 $1,3,5,7,\cdots$ 猜测 $a_n=2n-1$,数学归纳法验证成立[^4] --- #### 二、累加累乘法 **适用条件**: - 累加法:形如 $a_{n+1}-a_n=f(n)$ - 累乘法:形如 $\frac{a_{n+1}}{a_n}=f(n)$ **步骤**: 1. 累加形式:$a_n=a_1+\sum_{k=1}^{n-1}f(k)$ 2. 累乘形式:$a_n=a_1\prod_{k=1}^{n-1}f(k)$ **示例**: 递推式 $a_{n+1}-a_n=2n$,解得: $$a_n = a_1 + \sum_{k=1}^{n-1}2k = a_1 + n(n-1)$$ --- #### 三、特征方程法 **适用条件**:线性齐次递推关系(如 $a_{n+2}=p a_{n+1}+q a_n$) **步骤**: 1. 构造特征方程 $r^2=pr+q$ 2. 根后分情况: - 实根不同:$a_n=C_1 r_1^n + C_2 r_2^n$ - 重根:$a_n=(C_1 + C_2 n)r^n$ **示例**:斐波那契数列 $f(n)=f(n-1)+f(n-2)$ 特征方程 $r^2=r+1$,根 $r=\frac{1\pm\sqrt{5}}{2}$ 公式: $$f(n)=\frac{1}{\sqrt{5}}\left( \left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n \right)$$ (特征方程法应用实例[^2][^3]) --- #### 四、不动点法 **适用条件**:分式递推 $a_{n+1}=\frac{k a_n + c}{m a_n + d}$ **步骤**: 1. 解方程 $x=\frac{kx + c}{mx + d}$ 得不动点 2. 构造数列 $b_n=\frac{1}{a_n - \alpha}$ 等简化递推关系 3. 转化后使用其他方法解 **示例**:递推式 $a_{n+1}=\frac{2a_n + 1}{a_n + 3}$ 解得不动点 $x=1$,令 $b_n=\frac{1}{a_n -1}$,转化为线性递推关系 (不动点法原理参考[^1]) --- #### 五、生成函数法 **适用条件**:复杂递推关系或组合数列 **步骤**: 1. 设生成函数 $G(x)=\sum_{n=0}^\infty a_n x^n$ 2. 建立关于 $G(x)$ 的方程 3. 解方程后展开得 **示例**:卡特兰数满足 $C_{n+1}=\sum_{i=0}^n C_i C_{n-i}$ 过生成函数 $G(x)=xG(x)^2 +1$,解得: $$C_n=\frac{1}{n+1}\binom{2n}{n}$$ --- #### 六、特殊数列参考 1. **调和数列**:$H_n=\sum_{k=1}^n \frac{1}{k}$ 2. **平方数列**:$S_n=\frac{n(n+1)(2n+1)}{6}$ 3. **立方数列**:$T_n=\left[ \frac{n(n+1)}{2} \right]^2$ (和公式推导参考高斯和思想[^4]) --- ### 方法选择指南 | 递推形式 | 推荐方法 | |---------|---------| | 等差/等比 | 观察归纳法 | | 一阶线性递推 | 累加/累乘法 | | 二阶线性递推 | 特征方程法 | | 分式递推 | 不动点法 | | 复杂递推 | 生成函数法 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值