【SDOI2014】BZOJ3529 数表题解(Mobius反演+树状数组+除法分块)

题目:BZOJ3529.
题目大意:设 f ( i , j ) = ∑ d ∣ g c d ( i , j ) d f(i,j)=\sum_{d|gcd(i,j)}d f(i,j)=dgcd(i,j)d,给定 Q Q Q组询问,每次询问 n , m , a n,m,a n,m,a,求 ∑ i = 1 n ∑ j = 1 , f ( i , j ) ≤ a m f ( i , j ) \sum_{i=1}^{n}\sum_{j=1,f(i,j)\leq a}^{m}f(i,j) i=1nj=1,f(i,j)amf(i,j).
1 ≤ n , m ≤ 1 0 5 , 1 ≤ q ≤ 2 ∗ 1 0 4 , 1 ≤ ∣ a ∣ ≤ 1 0 9 1\leq n,m\leq 10^5,1\leq q\leq 2*10^4,1\leq |a|\leq 10^9 1n,m105,1q2104,1a109.

先考虑没有 a a a限制的情况,那么:
∑ i = 1 n ∑ j = 1 m f ( i , j ) = ∑ i = 1 n ∑ j = 1 m ∑ d ∣ g c d ( i , j ) d = ∑ d = 1 m i n ( n , m ) ( ∑ t ∣ d t ) ( ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = d ] ) \sum_{i=1}^{n}\sum_{j=1}^{m}f(i,j)\\ =\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d|gcd(i,j)}d\\ =\sum_{d=1}^{min(n,m)}(\sum_{t|d}t)(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d]) i=1nj=1mf(i,j)=i=1nj=1mdgcd(i,j)d=d=1min(n,m)(tdt)(i=1nj=1m[gcd(i,j)=d])

σ ( n ) = ∑ d ∣ n d \sigma(n)=\sum_{d|n}d σ(n)=dnd,那么:
∑ d = 1 m i n ( n , m ) ( ∑ t ∣ d t ) ( ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = d ] ) = ∑ d = 1 m i n ( n , m ) σ ( d ) ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = d ] = ∑ d = 1 m i n ( n , m ) σ ( d ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ g c d ( i , j ) = 1 ] = ∑ d = 1 m i n ( n , m ) σ ( d ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ∑ t ∣ i ∧ t ∣ j μ ( t ) = ∑ d = 1 m i n ( n , m ) σ ( d ) ∑ t = 1 ⌊ m i n ( n , m ) d ⌋ μ ( t ) ⌊ n d t ⌋ ⌊ m d t ⌋ \sum_{d=1}^{min(n,m)}(\sum_{t|d}t)(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d])\\ =\sum_{d=1}^{min(n,m)}\sigma(d)\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d]\\ =\sum_{d=1}^{min(n,m)}\sigma(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}[gcd(i,j)=1]\\ =\sum_{d=1}^{min(n,m)}\sigma(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\sum_{t|i\wedge t|j}\mu(t)\\ =\sum_{d=1}^{min(n,m)}\sigma(d)\sum_{t=1}^{\left\lfloor\frac{min(n,m)}{d}\right\rfloor}\mu(t)\left\lfloor\frac{n}{dt}\right\rfloor\left\lfloor\frac{m}{dt}\right\rfloor d=1min(n,m)(tdt)(i=1nj=1m[gcd(i,j)=d])=d=1min(n,m)σ(d)i=1nj=1m[gcd(i,j)=d]=d=1min(n,m)σ(d)i=1dnj=1dm[gcd(i,j)=1]=d=1min(n,m)σ(d)i=1dnj=1dmtitjμ(t)=d=1min(n,m)σ(d)t=1dmin(n,m)μ(t)dtndtm

考虑枚举 c = d t c=dt c=dt,那么:
= ∑ d = 1 m i n ( n , m ) σ ( d ) ∑ t = 1 ⌊ m i n ( n , m ) d ⌋ μ ( t ) ⌊ n d t ⌋ ⌊ m d t ⌋ = ∑ c = 1 m i n ( n , m ) ⌊ n c ⌋ ⌊ m c ⌋ ∑ d ∣ c μ ( c d ) σ ( d ) =\sum_{d=1}^{min(n,m)}\sigma(d)\sum_{t=1}^{\left\lfloor\frac{min(n,m)}{d}\right\rfloor}\mu(t)\left\lfloor\frac{n}{dt}\right\rfloor\left\lfloor\frac{m}{dt}\right\rfloor\\ =\sum_{c=1}^{min(n,m)}\left\lfloor\frac{n}{c}\right\rfloor\left\lfloor\frac{m}{c}\right\rfloor\sum_{d|c}\mu(\frac{c}{d})\sigma(d) =d=1min(n,m)σ(d)t=1dmin(n,m)μ(t)dtndtm=c=1min(n,m)cncmdcμ(dc)σ(d)

线性筛出 μ \mu μ σ \sigma σ并预处理出它们的dirichlet卷积的前缀和 g g g,然后除法分块处理即可做到 O ( n ) O(\sqrt{n}) O(n )处理一次询问.

考虑离线处理 a a a的限制.我们先对询问按照 a a a排序,把所有 d d d按照 σ ( d ) \sigma(d) σ(d)大小排序,并用树状数组动态维护 g g g,即可做到 O ( n log ⁡ 2 n + Q n log ⁡ n ) O(n\log^2n+Q\sqrt{n}\log n) O(nlog2n+Qn logn).

具体来说,每次当我们要加入一个数 d d d的贡献时,我们枚举 d d d的倍数,把这些倍数加上 d d d的贡献.查询时用树状数组维护前缀和即可.

代码如下:

#include<bits/stdc++.h>
  using namespace std;

#define Abigail inline void
typedef long long LL;

const int N=100000,Q=20000;
const LL mod=(1LL<<31)-1;

int tp,pr[N+9],b[N+9];
LL mu[N+9],sigma[N+9],sd[N+9];

void sieve(int n){      //先把约数和函数筛错,重写一遍后再把Mobius函数筛错的我是不是没了...
  for (int i=2;i<=n;++i) b[i]=1;
  sigma[1]=mu[1]=1;int v;
  for (int i=2;i<=n;++i){
  	if (b[i]) pr[++tp]=i,mu[i]=-1,sigma[i]=sd[i]=i+1;
  	for (int j=1;j<=tp&&i*pr[j]<=n;++j){
  	  b[v=i*pr[j]]=0;
  	  if (i%pr[j]==0){
  	  	mu[v]=0;
  	  	sd[v]=sd[i]*pr[j]+1;sigma[v]=sigma[i]/sd[i]*sd[v];
  	    break;
  	  }
  	  mu[v]=-mu[i];
  	  sd[v]=pr[j]+1;sigma[v]=sigma[i]*sigma[pr[j]];
  	}
  }
}

int t;
struct Question{
  int n,m,id;
  LL a;
}q[Q+9];
LL ans[Q+9];

bool cmp1(const Question &a,const Question &b){return a.a<b.a;}

int d[N+9];

bool cmp2(const int &a,const int &b){return sigma[a]<sigma[b];}

LL g[N+9];

void Bit_add(int x,LL v){for (;x<=N;x+=x&-x) g[x]+=v;}
LL Bit_query(int x){LL sum=0;for (;x;x-=x&-x) sum+=g[x];return sum;}
LL Bit_query(int x,int y){return Bit_query(y)-Bit_query(x-1);}

void solve_add(int x){
  for (int i=1;i*x<=N;++i)
    Bit_add(i*x,sigma[x]*mu[i]);
}

LL solve_query(int n,int m){
  LL ans=0;
  if (n>m) swap(n,m);
  for (int l=1,r;l<=n;l=r+1){
  	r=min(n/(n/l),m/(m/l));
  	ans+=(n/l)*(m/l)*Bit_query(l,r);
  }
  return ans;
}

Abigail into(){
  scanf("%d",&t);
  for (int i=1;i<=t;++i){ 
    scanf("%d%d%lld",&q[i].n,&q[i].m,&q[i].a);
    q[i].id=i;
  } 
}

Abigail work(){
  sieve(N);
  sort(q+1,q+1+t,cmp1);
  for (int i=1;i<=N;++i) d[i]=i;
  sort(d+1,d+1+N,cmp2);
  int now=0;
  for (int i=1;i<=t;++i){
  	while (now<N&&sigma[d[now+1]]<=q[i].a) solve_add(d[++now]);
    ans[q[i].id]=solve_query(q[i].n,q[i].m);
  }
}

Abigail outo(){
  for (int i=1;i<=t;++i)
    printf("%lld\n",ans[i]&mod);
}

int main(){
  into();
  work();
  outo();
  return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值