蓝书(算法竞赛进阶指南)刷题记录——BZOJ1999 树网的核(树的直径)

题目:BZOJ1999.
题目大意:定义一条路径到一个点的距离为一条路径中距离这个点最近的一个点到这个点的距离,一条路径的偏心距为一个距离这条路径最远的点到这条路径的距离.给定一棵 n n n个点的树,求在这棵树的一条直径上的两个点连成一条路径 F F F,使得 F F F的长度不超过 s s s且偏心距最短,输出这个最短的偏心距.
1 ≤ n ≤ 5 ∗ 1 0 5 , 0 ≤ s &lt; 2 31 1\leq n\leq 5*10^5,0\leq s&lt;2^{31} 1n5105,0s<231 0 ≤ 0\leq 0所有权值 &lt; 500 &lt;500 <500.

首先根据题目,我们先把直径跑出来,先预处理出直径上每一个点不经过直径上的点可以到达最远的点的距离 d i s [ i ] dis[i] dis[i],容易发现此时直径的偏心距就是 d i s [ i ] dis[i] dis[i]中最大的.

然后把直径列成一条链,把第 i i i个点不经过直径上 i i i后面的点可以到达最远的点的距离 p d [ i ] pd[i] pd[i]和不经过 i i i前面点的最远距离 s d [ i ] sd[i] sd[i]求出来.

之后考虑用双指针枚举路径 F F F对应在直径上的区间 [ l , r ] [l,r] [l,r],枚举左端点 l l l的时候让 r r r尽量大(显然这样更优),然后取 p d [ l ] , max ⁡ i = l + 1 r − 1 { d i s [ i ] } , s d [ r ] pd[l],\max_{i=l+1}^{r-1}\{dis[i]\},sd[r] pd[l],maxi=l+1r1{dis[i]},sd[r]中的最大值就是当前路径 F F F的偏心距,用单调队列即可维护.

不过事实上没什么必要,因为很显然 d i s [ i ] ≤ p d [ i ] dis[i]\leq pd[i] dis[i]pd[i],所以我们只需要存一个变量就可以得到 p d [ l ] , max ⁡ i = l + 1 r − 1 { d i s [ i ] } pd[l],\max_{i=l+1}^{r-1}\{dis[i]\} pd[l],maxi=l+1r1{dis[i]}的最大值了.

时间复杂度 O ( n ) O(n) O(n).

代码如下:

#include<bits/stdc++.h>
using namespace std;

#define Abigail inline void
typedef long long LL;

const int N=500000,INF=(1<<30)-1;

int n,m;
struct side{
  int y,next,v;
}e[N*2+9];
int lin[N+9],cs;

void Ins(int x,int y,int v){e[++cs].y=y;e[cs].v=v;e[cs].next=lin[x];lin[x]=cs;}
void Ins2(int x,int y,int v){Ins(x,y,v);Ins(y,x,v);}

int dp[N+9][2],pre[N+9][2];

void Update(int k,int id){
  int v=dp[e[id].y][0]+e[id].v;
  if (v>dp[k][0]){
  	dp[k][1]=dp[k][0];pre[k][1]=pre[k][0];
  	dp[k][0]=v;pre[k][0]=id;
  }else if (v>dp[k][1]) dp[k][1]=v,pre[k][1]=id;
}

void Dfs_dp(int k,int fa){
  dp[k][0]=0;dp[k][1]=-INF;
  for (int i=lin[k];i;i=e[i].next)
    if (e[i].y^fa){
      Dfs_dp(e[i].y,k);
      Update(k,i);
    }
}

int dia[N+9],v[N+9],cd;

void Get_dia(){
  Dfs_dp(1,0);
  int mx=1;
  for (int i=1;i<=n;++i)
    if (dp[i][0]+dp[i][1]>dp[mx][0]+dp[mx][1]) mx=i;
  int k=mx;
  for (;k;k=e[pre[k][0]].y) dia[++cd]=k,v[cd]=e[pre[k][0]].v;
  reverse(dia+1,dia+cd+1);
  reverse(v+1,v+cd+1);
  v[cd+1]=e[pre[mx][1]].v;
  for (k=e[pre[mx][1]].y;k;k=e[pre[k][0]].y) dia[++cd]=k,v[cd+1]=e[pre[k][0]].v;
}

int dis[N+9],vis[N+9];

void Dfs_dis(int k,int id,int vd){
  vis[k]=1;
  dis[id]=max(dis[id],vd);
  for (int i=lin[k];i;i=e[i].next)
    if (!vis[e[i].y]) Dfs_dis(e[i].y,id,vd+e[i].v);
}

int pd[N+9],sd[N+9];

void Get_dis(){
  for (int i=1;i<=cd;++i) vis[dia[i]]=1,dis[i]=0;
  for (int i=1;i<=cd;++i){
    Dfs_dis(dia[i],i,0);
    pd[i]=max(dis[i],pd[i-1]+v[i]);
  }
  for (int i=cd;i>=1;--i) sd[i]=max(sd[i],sd[i+1]+v[i+1]);
}

int ans;

void Get_ans(){
  int l=0,r=0,sum=0,now=0;
  ans=INF;
  for (;l<cd;){
    sum-=v[++l];now=max(now,pd[l]);
    for (;r<cd&&sum<=m-v[r+1];++r) sum+=v[r+1],now=max(now,dis[r]);
	ans=min(ans,max(now,sd[r]));
  }
}

Abigail into(){
  scanf("%d%d",&n,&m);
  for (int i=1;i<n;++i){
  	int x,y,v;
  	scanf("%d%d%d",&x,&y,&v);
  	Ins2(x,y,v);
  }
}

Abigail work(){
  Get_dia();
  Get_dis();
  Get_ans();
}

Abigail outo(){
  printf("%d\n",ans);
}

int main(){
  into();
  work();
  outo();
  return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值