反演原理相关

一.反演的定义.

演绎:对于一个形如 f i = ∑ j = 1 i g j f_i=\sum_{j=1}^{i}g_j fi=j=1igj,我们称其为演绎(正演).

反演:对于一个演绎 f i = ∑ j = 1 i g j f_i=\sum_{j=1}^{i}g_j fi=j=1igj,我们称它对应的反演为 g i = ∑ j = 1 i B i , j f j g_i=\sum_{j=1}^{i}B_{i,j}f_j gi=j=1iBi,jfj.

也就是说演绎和反演的关系是:
f i = ∑ j = 1 i A i , j g j ⇔ g i = ∑ j = 1 i B i , j f j f_i=\sum_{j=1}^{i}A_{i,j}g_j\Leftrightarrow g_i=\sum_{j=1}^{i}B_{i,j}f_j fi=j=1iAi,jgjgi=j=1iBi,jfj

我们来推导一下什么时候才会满足这个条件:
f i = ∑ j = 1 i A i , j ∑ k = 1 j B j , k f k = ∑ j = 1 i f j ∑ k = j i A i , k B k , j f_i=\sum_{j=1}^{i}A_{i,j}\sum_{k=1}^{j}B_{j,k}f_k\\ =\sum_{j=1}^{i}f_{j}\sum_{k=j}^{i}A_{i,k}B_{k,j}\\ fi=j=1iAi,jk=1jBj,kfk=j=1ifjk=jiAi,kBk,j

同时反过来代入:
g i = ∑ j = 1 i B i , j ∑ k = 1 j A j , k g k = ∑ j = 1 i g j ∑ k = j i B i , k A k , j g_i=\sum_{j=1}^{i}B_{i,j}\sum_{k=1}^{j}A_{j,k}g_k\\ =\sum_{j=1}^{i}g_{j}\sum_{k=j}^{i}B_{i,k}A_{k,j}\\ gi=j=1iBi,jk=1jAj,kgk=j=1igjk=jiBi,kAk,j

这个时候,我们发现必然有:
∑ k = j i A i , k B k , j = ∑ k = j i B i , k A k , j = [ i = j ] \sum_{k=j}^{i}A_{i,k}B_{k,j}=\sum_{k=j}^{i}B_{i,k}A_{k,j}=[i=j] k=jiAi,kBk,j=k=jiBi,kAk,j=[i=j]

由此我们可以得出一个定理
∑ k = j i A i , k B k , j = [ i = j ] ⇔ ( f i = ∑ j = 1 i A i , j g j ⇔ g i = ∑ j = 1 i B i , j f j ) \sum_{k=j}^{i}A_{i,k}B_{k,j}=[i=j]\Leftrightarrow \left(f_i=\sum_{j=1}^{i}A_{i,j}g_j\Leftrightarrow g_i=\sum_{j=1}^{i}B_{i,j}f_j\right) k=jiAi,kBk,j=[i=j](fi=j=1iAi,jgjgi=j=1iBi,jfj)



二.反演原理.

我们把 f f f g g g都写成一列的矩阵形式,可以得到:
f i , 1 = ∑ j = 1 i A i , j g j , 1 ⇔ g i , 1 = ∑ j = 1 i B i , j f j , 1 f_{i,1}=\sum_{j=1}^{i}A_{i,j}g_{j,1}\Leftrightarrow g_{i,1}=\sum_{j=1}^{i}B_{i,j}f_{j,1} fi,1=j=1iAi,jgj,1gi,1=j=1iBi,jfj,1

写成矩阵的形式就是:
[ f 1 , 1 f 2 , 1 f 3 , 1 ⋮ f n , 1 ] [ A 1 , 1 0 0 ⋯ 0 A 2 , 1 A 2 , 2 0 ⋯ 0 A 3 , 1 A 3 , 2 A 3 , 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ A n , 1 A n , 2 A n , 3 ⋯ A n , n ] = [ g 1 , 1 g 2 , 1 g 3 , 1 ⋮ g n , 1 ] ⇔ [ g 1 , 1 g 2 , 1 g 3 , 1 ⋮ g n , 1 ] [ B 1 , 1 0 0 ⋯ 0 B 2 , 1 B 2 , 2 0 ⋯ 0 B 3 , 1 B 3 , 2 B 3 , 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ B n , 1 B n , 2 B n , 3 ⋯ B n , n ] = [ f 1 , 1 f 2 , 1 f 3 , 1 ⋮ f n , 1 ] \left[\begin{matrix} f_{1,1}\\ f_{2,1}\\ f_{3,1}\\ \vdots\\ f_{n,1} \end{matrix}\right] \left[\begin{matrix} A_{1,1}&0&0&\cdots&0\\ A_{2,1}&A_{2,2}&0&\cdots&0\\ A_{3,1}&A_{3,2}&A_{3,3}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ A_{n,1}&A_{n,2}&A_{n,3}&\cdots&A_{n,n} \end{matrix}\right]= \left[\begin{matrix} g_{1,1}\\ g_{2,1}\\ g_{3,1}\\ \vdots\\ g_{n,1} \end{matrix}\right]\Leftrightarrow\left[\begin{matrix} g_{1,1}\\ g_{2,1}\\ g_{3,1}\\ \vdots\\ g_{n,1} \end{matrix}\right] \left[\begin{matrix} B_{1,1}&0&0&\cdots&0\\ B_{2,1}&B_{2,2}&0&\cdots&0\\ B_{3,1}&B_{3,2}&B_{3,3}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ B_{n,1}&B_{n,2}&B_{n,3}&\cdots&B_{n,n} \end{matrix}\right]= \left[\begin{matrix} f_{1,1}\\ f_{2,1}\\ f_{3,1}\\ \vdots\\ f_{n,1} \end{matrix}\right] f1,1f2,1f3,1fn,1A1,1A2,1A3,1An,10A2,2A3,2An,200A3,3An,3000An,n=g1,1g2,1g3,1gn,1g1,1g2,1g3,1gn,1B1,1B2,1B3,1Bn,10B2,2B3,2Bn,200B3,3Bn,3000Bn,n=f1,1f2,1f3,1fn,1

定睛一看,矩阵 A A A和矩阵 B B B互为逆矩阵,所以说求反演系数本质上就是在求逆矩阵.

我们称之为反演原理.


三.转置反演.

考虑一个类似于反演的形式:
f i = ∑ j = i n A j , i g j ⇔ g i = ∑ j = i n B j , i f j f_{i}=\sum_{j=i}^{n}A_{j,i}g_j\Leftrightarrow g_i=\sum_{j=i}^{n}B_{j,i}f_j fi=j=inAj,igjgi=j=inBj,ifj

直接代入式子得到:
f i = ∑ j = i n A j , i ∑ k = j n B k , j f k = ∑ j = i n f j ∑ k = i j B j , k A k , i f_{i}=\sum_{j=i}^{n}A_{j,i}\sum_{k=j}^{n}B_{k,j}f_k\\ =\sum_{j=i}^{n}f_{j}\sum_{k=i}^{j}B_{j,k}A_{k,i} fi=j=inAj,ik=jnBk,jfk=j=infjk=ijBj,kAk,i

同理可得到:
g i = ∑ j = i n g j ∑ k = i j A j , k B k , i g_{i}=\sum_{j=i}^{n}g_{j}\sum_{k=i}^{j}A_{j,k}B_{k,i} gi=j=ingjk=ijAj,kBk,i

即:
∑ k = i j A j , k B k , i = ∑ k = i j B j , k A k , i = [ i = j ] \sum_{k=i}^{j}A_{j,k}B_{k,i}=\sum_{k=i}^{j}B_{j,k}A_{k,i}=[i=j] k=ijAj,kBk,i=k=ijBj,kAk,i=[i=j]

若此时有反演:
f i ′ = ∑ j = 1 i A i , j ′ g j ′ ⇔ g i ′ = ∑ j = 1 i B i , j ′ f j ′ f'_{i}=\sum_{j=1}^{i}A'_{i,j}g'_{j}\Leftrightarrow g'_{i}=\sum_{j=1}^{i}B'_{i,j}f'_{j} fi=j=1iAi,jgjgi=j=1iBi,jfj

由上面的结论得到:
∑ k = j i A i , k ′ B k , j ′ = ∑ k = j i B i , k ′ A k , j ′ = [ i = j ] \sum_{k=j}^{i}A'_{i,k}B'_{k,j}=\sum_{k=j}^{i}B'_{i,k}A'_{k,j}=[i=j] k=jiAi,kBk,j=k=jiBi,kAk,j=[i=j]

那么此时就可以让 A j , i = A i , j ′ , B j , i = B i , j ′ A_{j,i}=A'_{i,j},B_{j,i}=B'_{i,j} Aj,i=Ai,j,Bj,i=Bi,j.

发现 A A A A ′ A' A的转置矩阵, B B B B ′ B' B的转置矩阵,故称下面两个反演互为转置反演
f i = ∑ j = 1 i A i , j g j ⇔ g i = ∑ j = 1 i B i , j f j f i = ∑ j = i n A j , i g j ⇔ g i = ∑ j = i n B j , i f j f_{i}=\sum_{j=1}^{i}A_{i,j}g_j\Leftrightarrow g_i=\sum_{j=1}^{i}B_{i,j}f_j\\f_{i}=\sum_{j=i}^{n}A_{j,i}g_j\Leftrightarrow g_i=\sum_{j=i}^{n}B_{j,i}f_j fi=j=1iAi,jgjgi=j=1iBi,jfjfi=j=inAj,igjgi=j=inBj,ifj

若放到矩阵上来说,就是一个三角矩阵的转置矩阵的逆矩阵等于这个三角矩阵的逆矩阵的转置矩阵,即:
A ‾ − 1 = A − 1 ‾ \overline{A}^{-1}=\overline{A^{-1}} A1=A1

注意其前提为 A A A是个三角矩阵.


四.转移反演中的某个系数.

假设我们有如下形式的反演:
f i = ∑ j = 1 i A i , j c j g j ⇔ g i = ∑ j = 1 i B i , j f j f_{i}=\sum_{j=1}^{i}A_{i,j}c_{j}g_j\Leftrightarrow g_i=\sum_{j=1}^{i}B_{i,j}f_j\\ fi=j=1iAi,jcjgjgi=j=1iBi,jfj

考虑如何把系数 c i c_i ci转移到右式中.

z i = c j g j z_{i}=c_{j}g_{j} zi=cjgj,那么有:
f i = ∑ j = 1 i A i , j z j ⇔ z i c i = ∑ j = 1 i B i , j f j f i = ∑ j = 1 i A i , j z j ⇔ z i = ∑ j = 1 i B i , j c i f j f_{i}=\sum_{j=1}^{i}A_{i,j}z_{j}\Leftrightarrow \frac{z_{i}}{c_{i}}=\sum_{j=1}^{i}B_{i,j}f_{j}\\ f_{i}=\sum_{j=1}^{i}A_{i,j}z_{j}\Leftrightarrow z_{i}=\sum_{j=1}^{i}B_{i,j}c_{i}f_{j} fi=j=1iAi,jzjcizi=j=1iBi,jfjfi=j=1iAi,jzjzi=j=1iBi,jcifj

同理也有:
f i = ∑ j = i n A j , i c j g j ⇔ g i = ∑ j = i n B j , i f j f i = ∑ j = i n A j , i z j ⇔ z i = ∑ j = i n B j , i c i f j f_{i}=\sum_{j=i}^{n}A_{j,i}c_jg_j\Leftrightarrow g_i=\sum_{j=i}^{n}B_{j,i}f_j\\ f_{i}=\sum_{j=i}^{n}A_{j,i}z_j\Leftrightarrow z_{i}=\sum_{j=i}^{n}B_{j,i}c_if_{j} fi=j=inAj,icjgjgi=j=inBj,ifjfi=j=inAj,izjzi=j=inBj,icifj

我们称这个技巧为系数转移.


五.往乘法上的拓展.

乘法意义下的反演
f i = ∏ j = 1 i g j A i , j ⇔ g i = ∏ j = 1 i f j B i , j f_{i}=\prod_{j=1}^{i}g^{A_{i,j}}_{j}\Leftrightarrow g_{i}=\prod_{j=1}^{i}f^{B_{i,j}}_{j} fi=j=1igjAi,jgi=j=1ifjBi,j

这种反演对应了把加法换成乘法并把乘法换成幂后的广义矩阵乘法,由于它本质上与最初的反演相同,所以之前反演拥有的性质这个反演都拥有.


六.一个经典的反演变换.

对于一个反演:
f i = ∑ j = 1 i ( − 1 ) j A i , j g j ⇔ g i = ∑ j = 1 i ( − 1 ) j B i , j f j f_i=\sum_{j=1}^{i}(-1)^{j}A_{i,j}g_j\Leftrightarrow g_i=\sum_{j=1}^{i}(-1)^{j}B_{i,j}f_{j} fi=j=1i(1)jAi,jgjgi=j=1i(1)jBi,jfj

很容易变换出与它等价的7种形式:
f i = ∑ j = 1 i A i , j g j ⇔ g i = ∑ j = 1 i ( − 1 ) i − j B i , j f j f i = ∑ j = i n ( − 1 ) j A j , i g j ⇔ g i = ∑ j = i n ( − 1 ) j B j , i f j f i = ∑ j = i n A j , i g j ⇔ g i = ∑ j = i n ( − 1 ) j − i B j , i f j f i = ∏ j = 1 i g j ( − 1 ) j A i , j ⇔ g i = ∏ j = 1 i f j ( − 1 ) j B i , j f i = ∏ j = 1 i g j A i , j ⇔ g i = ∏ j = 1 i f j ( − 1 ) i − j B i , j f i = ∏ j = i n g j ( − 1 ) j A j , i ⇔ g i = ∏ j = i n f j ( − 1 ) j B j , i f i = ∏ j = i n g j A j , i ⇔ g i = ∏ j = 1 i f j ( − 1 ) j − i B j , i f_{i}=\sum_{j=1}^{i}A_{i,j}g_j\Leftrightarrow g_i=\sum_{j=1}^{i}(-1)^{i-j}B_{i,j}f_j\\ f_{i}=\sum_{j=i}^{n}(-1)^{j}A_{j,i}g_j\Leftrightarrow g_i=\sum_{j=i}^{n}(-1)^{j}B_{j,i}f_{j}\\ f_{i}=\sum_{j=i}^{n}A_{j,i}g_j\Leftrightarrow g_i=\sum_{j=i}^{n}(-1)^{j-i}B_{j,i}f_{j}\\ f_i=\prod_{j=1}^{i}g^{(-1)^{j}A_{i,j}}_j\Leftrightarrow g_i=\prod_{j=1}^{i}f^{(-1)^{j}B_{i,j}}_{j}\\ f_i=\prod_{j=1}^{i}g^{A_{i,j}}_j\Leftrightarrow g_i=\prod_{j=1}^{i}f^{(-1)^{i-j}B_{i,j}}_{j}\\ f_i=\prod_{j=i}^{n}g^{(-1)^{j}A_{j,i}}_j\Leftrightarrow g_i=\prod_{j=i}^{n}f^{(-1)^{j}B_{j,i}}_{j}\\ f_i=\prod_{j=i}^{n}g^{A_{j,i}}_j\Leftrightarrow g_i=\prod_{j=1}^{i}f^{(-1)^{j-i}B_{j,i}}_{j}\\ fi=j=1iAi,jgjgi=j=1i(1)ijBi,jfjfi=j=in(1)jAj,igjgi=j=in(1)jBj,ifjfi=j=inAj,igjgi=j=in(1)jiBj,ifjfi=j=1igj(1)jAi,jgi=j=1ifj(1)jBi,jfi=j=1igjAi,jgi=j=1ifj(1)ijBi,jfi=j=ingj(1)jAj,igi=j=infj(1)jBj,ifi=j=ingjAj,igi=j=1ifj(1)jiBj,i



七.集合间的反演.

集合反演:集合间的反演形如:
f ( S 1 ) = ∑ S 2 ⊆ S 1 A ( S 1 , S 2 ) g ( S 2 ) ⇔ g ( S 1 ) = ∑ S 2 ⊆ S 1 B ( S 1 , S 2 ) f ( S 2 ) f(S_1)=\sum_{S_2\subseteq S_1}A(S_1,S_2)g(S_2)\Leftrightarrow g(S_1)=\sum_{S_2\subseteq S_1}B(S_1,S_2)f(S_2) f(S1)=S2S1A(S1,S2)g(S2)g(S1)=S2S1B(S1,S2)f(S2)

集合间的反演可以把集合写成二进制的形式,这样就对应了数列上的反演.

转置反演与系数转移的方法仍然适用于集合间的反演.

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
反演控制方法与实现 《反演控制方法与实现》系统地介绍了反演控制方法的基本原理及其在不确定非线性系统中的应用。《反演控制方法与实现》共分为6章,在介绍反演法的一般理论的基础上,重点论述了抑制参数漂移的自适应反演方法,考虑非线性干扰观测器的弱抖振滑模反演方法,针对系统模型部分未知的情况,使用模糊系统和神经网络估计系统中的未知部分,给出了基于智能系统的反演设计方法,同时本书介绍了系统状态未知情况下的反演设计方法。针对各种情况本书均给出了详细的理论设计方法和Matlab仿真。   《反演控制方法与实现》是作者在从事控制理论与控制方法研究的基础上完成的。本书适用于从事非线性控制方法研究的工作人员和研究生参考。 前言 第1章 绪论 1·1 研究的背景及意义 1·2 李雅普诺夫稳定性理论 1·2·1 李雅普诺夫意义下的稳定性 1·2·2 有界性 1·2·3 李雅普诺夫稳定性理论 1·3 微分几何理论基础 1·3·1 李导数和李括号 1·3·2 微分同胚 1·3·3 控制系统的相对阶 1·3·4 输入状态线性化 1·3·5 状态反馈线性化的设计 1·4 反演法的基本原理 1·5 反演法的研究概况 1·5·1 自适应反演控制 1·5·2 鲁棒自适应反演控制 1·5·3 滑模反演控制 1·5·4 智能反演控制 1·5·5 其他反演控制方法 1·6 本书的主要研究内容 第2章 自适应反演控制方法 2·1 引言 2·2 常规自适应反演法 2·2·1 自适应反演法设计思路 2·2·2 仿真算例 2·3 抑制参数漂移的自适应反演控制 2·3·1 问题描述及预备知识 2·3·2 抑制参数漂移的自适应反演控制器设计 2·3·3 系统稳定性分析 2·3·4 仿真算例 2·4 扩展的自适应反演控制 2·4·1 问题描述 2·4·2 参数自适应律的设计 2·4·3 基于动态面的扩展反演控制器设计 2·4·4 稳定性分析 2·4·5 仿真算例 2·5 仿真算例的Matlab实现 2·5·1 节仿真算例的Matlab实现 2·5·2 节仿真算例的Matlab实现 2·5·3 节仿真算例的Matlab实现 2·6 本章 小结 第3章 不确定非线性系统的弱抖振滑模反演控制 3·1 引言 3·2 滑模控制基本原理 3·3 匹配不确定非线性系统的弱抖振滑模反演控制 3·3·1 问题描述 3·3·2 滑模反演控制器设计 3·3·3 滑模反演控制稳定性分析 3·3·4 自适应滑模反演控制器设计 3·3·5 自适应滑模反演控制稳定性分析 3·3·6 非线性干扰观测器 3·3·7 匹配不确定非线性系统的弱抖振滑模反演控制 3·3·8 仿真算例 3·4 非匹配不确定非线性系统的多滑模反演控制 3·4·1 问题描述 3·4·2 多滑模反演控制 3·4·3 基于非线性干扰观测器的多滑模反演控制 3·4·4 系统稳定性分析 3·4·5 仿真算例 3·5 仿真算例的Matlab实现 3·5·1 节弱抖振滑模反演控制的Matlab实现 3·5·2 节自适应弱抖振滑模反演控制Matlab实现 3·5·3 节多滑模反演控制Matlab实现 3·6 本章 小结 第4章 基于模糊系统的非线性系统反演控制 4·1 引言 4·2 基于模糊系统的非线性系统控制 4·2·1 问题的提出 4·2·2 模糊系统描述 4·2·3 控制器设计 4·2·4 仿真算例 4·3 节Matlab实现 4·4 本章 小结 第5章 基于神经网络的非线性系统反演控制 5·1 引言 5·2 非线性系统的鲁棒小波神经网络控制 5·2·1 问题的提出 5·2·2 小波神经网络结构 5·2·3 控制器的设计 5·2·4 稳定性分析 5·2·5 仿真 5·3 不确定非线性系统的鲁棒自适应渐近跟踪控制 5·3·1 控制目标 5·3·2 控制器设计 5·3·3 仿真算例 5·4 算例的Matlab实现 5·4·1 节算例的Matlab实现 5·4·2 节算例1的Matlab实现 5·4·3 节算例2的Matlab实现 5·5 本章 小结 第6章 基于状态观测器的反演控制器设计 6·1 滑模观测器控制器设计 6·1·1 滑模观测器设计 6·1·2 滑模反演控制器设计 6·2 仿真算例 6·3 节仿真实例的Matlab实现 6·4 本章 小结 参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值