拉格朗日反演学习笔记

拉格朗日反演

证明

对于两个函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x),若 f ( g ( x ) ) = x f(g(x))=x f(g(x))=x f ( x ) , g ( x ) f(x),g(x) f(x),g(x)的常数项为 0 0 0,一次项不为 0 0 0,那么称这两个函数互为复合逆。当然,根据 f ( g ( x ) ) = x f(g(x))=x f(g(x))=x可以推出 g ( f ( x ) ) = x g(f(x))=x g(f(x))=x,证明: f ( g ( f ( x ) ) ) = f ( x ) f(g(f(x)))=f(x) f(g(f(x)))=f(x),令 y = f ( x ) y=f(x) y=f(x),带入可得 f ( g ( y ) ) = y f(g(y))=y f(g(y))=y

对于互为复合逆的函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x),拉格朗日反演的两种形式如下:
[ x n ] f ( x ) = 1 n [ x − 1 ] 1 g ( x ) n [ x n ] h ( f ( x ) ) = 1 n [ x − 1 ] h ′ ( x ) g ( x ) n \begin{aligned}\\ [x^n]f(x)&=\frac{1}{n}[x^{-1}]\frac{1}{g(x)^n}\\ [x^n]h(f(x))&=\frac{1}{n}[x^{-1}]\frac{h'(x)}{g(x)^n} \end{aligned} [xn]f(x)[xn]h(f(x))=n1[x1]g(x)n1=n1[x1]g(x)nh(x)
现在分别对这两个式子进行证明:

形式一

f ( x ) = ∑ i ≥ 0 a i x i f(x)=\sum_{i\ge 0}a_ix^i f(x)=i0aixi,那么有:
f ( g ( x ) ) =

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值