keras模拟model.fit()操作

该博客介绍了如何在keras中手动模拟model.fit操作,使用MeanSquaredError作为指标(metric)。通过示例展示了如何在每个批次(batch)中计算loss、更新梯度并应用优化器。此外,还提供了完整的训练流程,包括在验证集上的评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

metric的使用

metric是指标的意思,如果使用均方差作为指标,那么metric的使用可以如下:

# metric使用
metric = keras.metrics.MeanSquaredError()
print(metric([5.], [2.]))
print(metric([0.], [1.]))
print(metric.result())
metric.reset_states()
metric([1.], [3.])
print(metric.result())

注:metric是可以累加上一步的结果的,如果不想累加就用metric.reset_states()清空上一步的结果。

tf.Tensor(9.0, shape=(), dtype=float32)
tf.Tensor(5.0, shape=(), dtype=float32)
tf.Tensor(5.0, shape=(), dtype=float32)
tf.Tensor(4.0, shape=(), dtype=float32)

keras手动模拟model.fit操作

# 在fit的过程中会执行如下过程
# 1. batch 遍历训练集 metric
#    1.1 自动求导
# 2. epoch结束 验证集 metric

epochs = 100
batch_size = 32
steps_per_epoch = len(x_train_scaled) // batch_size
optimizer = keras.optimizers.SGD()
metric = keras.metrics.MeanSquaredError()

def random_batch(x, y, batch_size=32):
    idx = np.random.randint(0, len(x), size=batch_size)
    return x[idx], y[idx]

model = keras.models.Sequential([
    keras.layers.Dense(30, activation='relu',
                       input_shape=x_train.shape[1:]),
    keras.layers.Dense(1),
])

for epoch in range(epochs):
    metric.reset_states()
    for step in range(steps_per_epoch):
    	# 获取数据
        x_batch, y_batch = random_batch(x_train_scaled, y_train,
                                        batch_size)
        with tf.GradientTape() as tape:
        # 获取预测值
            y_pred = model(x_batch)
         # 得到loss
            loss = tf.reduce_mean(
                keras.losses.mean_squared_error(y_batch, y_pred))
            metric(y_batch, y_pred)
		# 手动求梯度
        grads = tape.gradient(loss, model.variables)
        # 将梯度和变量绑定
        grads_and_vars = zip(grads, model.variables)
        # 将梯度添加
        optimizer.apply_gradients(grads_and_vars)
        print("\rEpoch", epoch, " train mse:",
              metric.result().numpy(), end="")
        # 验证集验证
    y_valid_pred = model(x_valid_scaled)
    # 在验证集上只用valid一个loss就行,不需要使用累计的loss,所以直接使用keras.losses.mean_squared_error
    valid_loss = tf.reduce_mean(
        keras.losses.mean_squared_error(y_valid_pred, y_valid))
    print("\t", "valid mse: ", valid_loss.numpy())
### Keras `utils.test_utils` 模块的功能与用法 #### 功能概述 Keras 提供了一个名为 `test_utils` 的模块,主要用于支持单元测试和模型验证。该模块中的函数通常用于简化测试流程并提供一些辅助工具来帮助开发者快速构建测试环境。虽然这些工具主要面向内部开发人员或高级用户,但在某些情况下也可以被外部使用者利用。 以下是 `keras.utils.test_utils` 中的一些常见功能及其用途: 1. **创建简单的神经网络模型** 这些函数允许快速定义小型的全连接层或多层感知器 (MLP),以便于测试目的。例如,可以通过几行代码生成一个具有指定层数和节点数的小型模型[^6]。 2. **数据集加载与预处理** 测试环境中可能需要模拟真实世界的数据分布。因此,`test_utils` 提供了一些便捷的方法来自动生成样本数据或者加载内置的小规模数据集进行实验[^7]。 3. **评估模型性能** 部分函数能够自动计算损失值、准确率等指标,并返回结果以确认预期行为是否正确实现。这对于调试新特性特别有帮助[^8]。 4. **多后端兼容性检测** 当前版本的 TensorFlow 已经整合了大部分原属于独立库 Keras 的组件;然而,在迁移过程中仍需注意不同框架之间的差异性问题。为此,“Test Utils”还包含了专门针对跨平台一致性检查的设计方案[^9]。 #### 使用示例 下面展示如何通过 Python 脚本调用部分核心 API 来完成基本操作演示: ```python from keras.utils import test_utils as tu import numpy as np # Example of generating dummy data for testing purposes. x_data, y_labels = tu.get_test_data(num_train=1000, num_test=200, input_shape=(10,), output_shape=(1,), classification=True) print(f"Training Data Shape: {x_data.shape}") print(f"Labels Shape : {y_labels.shape}") # Building a simple Sequential model using helper functions inside 'test_utils'. model = tu.get_small_sequential_mlp(dense_units=[32], activation='relu', final_activation='softmax') # Compiling the constructed network architecture before training phase starts. model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # Converting labels into one-hot encoded format suitable for categorical crossentropy losses. num_classes = len(np.unique(y_labels)) y_one_hot = tu.to_categorical(y_labels, num_classes=num_classes) history = model.fit(x_data[:800], y_one_hot[:800], validation_split=.2, epochs=5, batch_size=32) ``` 上述脚本片段展示了几个关键骤:首先是借助 `get_test_data()` 函数获取合成训练/测试集合;接着运用另一个封装好的方法建立基础架构——即所谓的微型 MLP 架构;最后则是标准编译过程以及拟合循环执行阶段。 --- #### 注意事项 尽管如此强大的工具箱极大地方便了日常研究活动开展,但也存在局限之处需要注意: - 大多数接口仅限于特定场景适用范围窄; - 文档覆盖程度较低可能导致初学者难以理解具体细节含义; - 性能优化方面未必达到工业级应用水准因而不适合大规模部署场合下采用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值