- 博客(36)
- 收藏
- 关注
原创 1.2.3 逻辑代数与运算
逻辑公式多,不易记忆。重在理解,比较复杂的公式,可以用真值表辅助理解。对逻辑公式的名称存一点印象,有助于理解别人所述的概念。基本逻辑运算非常简单,只包含与、或、非、异或这4种。逻辑表达式:使用逻辑运算符将逻辑变量连接在一起的表达式。真值表:把逻辑变量和表达式结果一一对应穷举出来的表格。
2024-12-02 22:27:05 186
原创 图像仿射变换(一)
此处参考opencv指导文档的定义,仿射变换是指任何可以表示为一个矩阵乘法,加一个向量的变换。其计算公式如图中所示,x和y分别代表输入图像上的位置,x’和y’代表输出图像的位置。A是一个2x2的矩阵,B是一个2x1的向量。A和B合并在一起,可以用M表示,M就是一个2x3的矩阵,也表述为仿射变换的转换矩阵。基本的仿射变换包括平移,缩放,旋转,错切。平移时,只需要考虑横向和纵向的偏移量B。缩放时,只考虑图像在横向和纵向的缩放比例,这两个方向上的缩放比例可以有差异。
2024-12-01 22:17:22 381
原创 1.2.2 数据校验码
校验码可以用于检查传输的信息中是否存在错误、对错误进行纠正。能够被校验的数据,码距必须大于1,否则数据中任何一位发生变化,都会变成另外一个合法的编码。
2024-11-28 22:09:28 174
原创 1.2.1 计算机数据编码
负数的补码是负数的反码加1得到。浮点数使用类似科学计数法的方式表达,分阶码和尾数,阶码越大,能够表示的数据范围越大。进位计数制是一种编码方式,它使用固定的r个符号,用位置代表权重,可以写成按权展开的多项式。以小数点为起点,向左的位置,依次表示权重为0,1,2,…向右的位置,依次表示权重为-1,-2, -3, …十进制转换为N进制,整数部分除以N取余,小数位乘N取整,从高位向低位依次排列。十进制,字符也可用二进制编码,遵守对应的组合规则,就得到了对应的编码方式。常见的进制有二进制,八进制,十进制,十六进制。
2024-11-26 22:11:21 268
原创 attention is all you need
通过对序列转换模型的调研,提出名为Transformer的网络结构。Transformer仅基于self-attention机制,无循环/卷积层,效果优,可并行,通用。该论文主要解决序列转换模型并行性差的问题。作者通过研读序列转换模型相关论文,观察到效果好的模型基本使用的都是RNN/CNN与encoder-decocer、attention mechanism结合的结构。其中,attetion mechanisim在序列建模中很重要,它可以不考虑序列中的距离建立不同位置的依赖关系。
2024-11-24 18:26:32 518
原创 tf.data.Dataset.from_tensor_slices详解
tf.data.Dataset.from_tensor_slices详解
2022-12-16 21:50:00 1190
原创 tf.keras.losses.SparseCategoricalCrossentropy详解
tf.keras.losses.SparseCategoricalCrossentropy详解
2022-11-13 15:12:00 1345
原创 tensorflow2读取数据P4: tf.data.TFRecordDataset创建Dataset
tensorflow2读取数据P4: tf.data.TFRecordDataset创建Dataset
2022-11-02 23:08:41 337
原创 tensorflow2数据读取P3: tf.data.Dataset.from_generator通过preprocessing.image.ImageDataGenerator构造Dataset
tensorflow2数据读取P3: tf.data.Dataset.from_generator通过preprocessing.image.ImageDataGenerator构造Dataset
2022-10-30 19:40:08 411
原创 tensorflow2数据读取P2: tf.data.Dataset.from_generator通过自定义的python生成器构造Dataset
tf.data.Dataset.from_generator通过自定义python生成器构造Dataset
2022-10-28 21:43:34 1693
可解释人工智能技术-积分梯度
2022-12-20
imagenet-labels
2022-12-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人