题目
在一个数字序列中,找到一个最长的子序列(可以不连续),使得这个子序列是不下降(非
递减)的。
样例
输入
8
1 2 3 -9 3 9 0 11
输出
6
题解
最优子结构(举例):以3结尾的最长非递减字串,它包含以2结尾的最长非递减字串
重复子问题(举例):以9和以3结尾的最长非递减字串,都会会包含以2结尾的最长非递减字串;
状态转换公式:
初值 :dp[i]=1
dp[i]=max(dp[i],dp[j]+1) A[i]>=A[j], j<=i
其中dp[i]表示以字符A[i]结尾的最长连续非递减字串
最优解:max(dp[0]…dp[n-1])
C++代码
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 100
int main()
{
int A[N],dp[N],n;
cin>>n;
for(int i=0;i<n;i++)
{
cin>>A[i];
}
for(int i=0;i<n;i++)
{
dp[i]=1;
}
for(int i=0;i<n;i++)
{
for(int j=0;j<i;j++)
{
if(A[j]<=A[i])
dp[i]=max(dp[i],dp[j]+1);
}
}
int m=dp[0];
for(int i=0;i<n;i++)
{
m=max(m,dp[i]);
}
cout<<m;
}
}