ElasticSearch 解析机制常见用法库 之 Tokenizer常用用法

Tokenizer 译作:“分词”,可以说是ElasticSearch Analysis机制中最重要的部分。

 

standard tokenizer

标准类型的tokenizer对欧洲语言非常友好, 支持Unicode。

如下是设置:

设置说明

max_token_length

最大的token集合,即经过tokenizer过后得到的结果集的最大值。如果token的长度超过了设置的长度,将会继续分,默认255

 

Edge NGram tokenizer

一个名字为 edgeNGram.的分词。

这个分词和 nGram 非常的类似。但是只是相当于 n-grams 的分词的方式,只保留了“从头至尾”的分词。

以下是 edgeNGram 分词的设置:

设置说明Default value

min_gram

分词后词语的最小长度

1.

max_gram

分词后词语的最大长度

2.

token_chars          

 设置分词的形式,例如,是数字还是文字。elasticsearch将根据分词的形式对文本进行分词。

[] (Keep all characters)

token_chars 所接受的以下形式:

letter

单词,字母 abï or 

digit

数字3 or 7

whitespace

例如 " " or "\n"

punctuation

例如 ! or "

symbol

例如 $ or 

例子:

 

Keyword Tokenizer

 keyword  类型的tokenizer 是将一整块的输入数据作为一个单独的分词。

以下是 keyword tokenizer 的类型:

设置说明

buffer_size

term buffer 的大小. 默认是 to 256.

Letter Tokenizer

一个  letter 类型的tokenizer分词是在非字母的环境中将数据分开。也就是说,这个分词的结果可以是一整块的的连续的数据内容 .注意, 这个分词对欧洲的语言非常的友好,但是对亚洲语言十分不友好。

Lowercase Tokenizer

一个 lowercase 类型的分词器可以看做Letter Tokenizer分词和Lower case Token Filter的结合体。即先用Letter Tokenizer分词,然后再把分词结果全部换成小写格式。

NGram Tokenizer

一个nGram.类型的分词器。

以下是 nGram tokenizer  的设置:

 

设置说明默认值

min_gram

   分词后词语的最小长度

1.

max_gram

   分词后数据的最大长度

2.

token_chars 

    设置分词的形式,例如数字还是文字。elasticsearch将根据分词的形式对文本进行分词。

[] (Keep all characters)

 

token_chars 所接受以下的形式:

letter     

例如 abï or 

digit

例如3 or 7

whitespace

例如 " " or "\n"

punctuation

例如 ! or "

symbol 

例如 $ or 

例子:

Whitespace Tokenizer

whitespace 类型的分词将文本通过空格进行分词。

 

Pattern Tokenizer

一个 pattern类型的分词可以利用正则表达式进行分词。 

设置说明

pattern

正则表达式的pattern,默认是 \W+.

flags

正则表达式的 flags.

group

哪个group去抽取数据。 默认是 to -1 (split).

IMPORTANT: 正则表达式应该和 token separators相匹配, 而不是 tokens 它们本身.

使用elasticsearch 不同语言的API 接口时,不必care字符转译问题。

group 设置为-1 (默认情况下) 等价于"split"。wwwUsing group >= 0 selects the matching group as the token. For example, if you have:

pattern = '([^']+)'
group   = 0
input   = aaa 'bbb' 'ccc'

the output will be two tokens: 'bbb' and 'ccc' (including the ' marks). With the same input but using group=1, the output would be: bbb and ccc (no ' marks).

 

UAX Email URL

 uax_url_email 类型的分词器和standard 类型的一十分类似,但是是分的  emails 和url

下面是uax_url_email tokenizer 的设置:

设置说明

max_token_length

经过此分词器后所得的数据的最大长度。 默认是 255.

Path Hierarchy Tokenizeredit

 path_hierarchy 路径分词器。例如有如下数据:

/something/something/else

经过该分词器后会得到如下数据 tokens:

/something
/something/something
/something/something/else
设置说明

delimiter

分隔符,默认 /.

replacement

一个选择替代符。 默认是delimiter.

buffer_size

缓存buffer的大小, 默认是 1024.

reverse

是否将分词后的tokens反转, 默认是 false.

skip

Controls initial tokens to skip, defaults to 0.

Classic Tokenizer

可以说是为英语而生的分词器. 这个分词器对于英文的首字符缩写、 公司名字、 email 、 大部分网站域名.都能很好的解决。 但是, 对于除了英语之外的其他语言,都不是很好使。

它的设置:

设置说明

max_token_length

分词后token的最大长度。 默认是 255.

Thai Tokenizer

泰语的分词。

更多精彩内容,请关注我的个人公众账号 互联网技术窝


 

  • 6
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
co.elastic.clients.elasticsearch.core.aggregations 是 Java 客户端 ElasticSearch 的一个聚合(Aggregation)方法,用于对数据进行分析和统计。 具体使用方法可以参考以下示例: ```java import co.elastic.clients.base.*; import co.elastic.clients.elasticsearch.*; import co.elastic.clients.elasticsearch.core.*; import co.elastic.clients.elasticsearch.core.aggregations.*; import co.elastic.clients.elasticsearch.core.aggregations.bucket.*; import co.elastic.clients.elasticsearch.core.aggregations.metrics.*; import java.io.IOException; import java.util.*; public class ElasticSearchAggregationExample { public static void main(String[] args) throws IOException, ApiException { RestClientBuilder restClientBuilder = RestClient.builder( new HttpHost("localhost", 9200, "http") ); ElasticSearch client = new ElasticSearch(restClientBuilder); SearchRequest request = new SearchRequest() .index("my_index") .source(new SearchSource() .query(new MatchAllQuery()) .aggregations(new TermsAggregation("my_terms_agg") .field("my_field") .size(10) .subAggregations(new AvgAggregation("my_avg_agg") .field("my_other_field") ) ) ); SearchResponse response = client.search(request); TermsAggregationResult myTermsAggResult = response.aggregations().terms("my_terms_agg"); for (TermsAggregationEntry entry : myTermsAggResult.buckets()) { String term = entry.keyAsString(); long count = entry.docCount(); AvgAggregationResult myAvgAggResult = entry.aggregations().avg("my_avg_agg"); double avg = myAvgAggResult.value(); System.out.println(term + ": " + count + ", avg: " + avg); } client.close(); } } ``` 这个例子展示了如何使用 co.elastic.clients.elasticsearch.core.aggregations 方法来进行聚合查询。在这个例子中,我们使用了 TermsAggregation 和 AvgAggregation 两个聚合方法,对数据进行了分组和统计。具体步骤为: 1. 创建一个 SearchRequest 对象,并设置索引名称和查询条件。 2. 在查询条件中添加聚合条件。这里使用了 TermsAggregation 来对数据进行分组,然后使用 AvgAggregation 来统计每个分组的平均值。 3. 执行查询,并获取查询结果。 4. 使用聚合结果对象的方法来获取聚合结果,然后对结果进行处理。 需要注意的是,聚合方法的具体参数和用法可以参考 ElasticSearch 官方文档。同时,Java 客户端的版本和 ElasticSearch 的版本也需要匹配,否则可能会出现兼容性问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值