学习使用JavaStreams解决问题的简单方法,这是一个允许我们快速有效地处理大量数据的框架。
当我们从列表中对元素进行分组时,我们可以随后聚合分组元素的字段,以执行有意义的操作,帮助我们分析数据。一些例子是加法、平均值或最大值/分钟值。这些单个字段的聚合可以很容易地使用Java流和收集器来完成。文档提供了如何进行这些类型计算的简单示例。
然而,还有更复杂的集合,如加权平均数、几何平均值。此外,可能需要同时对几个字段进行聚合。在本文中,我们将展示使用Java流解决这类问题的简单途径。使用该框架,我们可以快速有效地处理大量数据。
问题布局
让我们考虑一个简单的例子来展示我们想要解决的问题类型。我们将使它非常通用,这样我们就可以很容易地泛化它。让我们考虑一下TaxEntry
由以下代码定义的实体:
public class TaxEntry {
private String state;
private String city;
private int numEntries;
private double price;
//Constructors, getters, hashCode, equals etc
}
计算给定城市的条目总数非常简单:
Map<String, Integer> totalNumEntriesByCity =
taxes.stream().collect(Collectors.groupingBy(TaxEntry::getCity,
Collectors.summingInt(TaxEntry::getNumEntries)));
Collectors.groupingBy
接受两个参数:一个分类器函数来进行分组,一个收集器对属于给定组的所有元素进行下游聚合。我们用TaxEntry::getCity
作为分类器的功能。对于下游,我们使用Collectors::summingInt
返回Collector
这是我们为每个分组元素获得的税目数的总和。
如果我们试图找到复合分组的话,事情就会更复杂一些。例如,在前面的示例中,给定状态的条目总数。和城市。有几种方法可以做到这一点,但首先要定义的是一种非常简单的方法:
record StateCityGroup(String state, String city) {}
注意,我们使用的是Javarecord
,这是定义不可变类的简明方法。此外,Java编译器为我们生成字段访问器方法,hashCode
,平等,以及toString
实现。有了这一点,现在的解决方案很简单:
Map<StateCityGroup, Integer> totalNumEntriesForStateCity =
taxes.stream().collect(groupingBy(p -> new StateCityGroup(p.getState(), p.