调试pytorch框架下训练时出现nan和inf的技巧

1.断点技巧之条件断点

(1)表达式:判断表达式,Ture则停止,False继续,比如在某个变量等于naninf前停止,然后进入调试。

  在表达式中输入如下:
  1.torch.isnan(variable).any()
  2.torch.isinf(variable).any()
  3.torch.isnan(variable).any() or torch.isinf(variable).any()

检查张量元素中是否存在nan或者inf
(2)命中次数:输入次数即可,迭代到某次停止。
        variable=2,命中次数为2
(3)日志消息断点:不会打断训练,适合监测变量值,会在调试控制台展示值的变化。

  • ex:when i = {i}, loss = {loss}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值