Pytorch 处理 inf 和 nan 数值

        假设我们有这样的一个 tensor,我们需要把其中的 inf 和 nan 填充成别的数字 

import torch
import numpy as np

a = torch.Tensor(
    [[5, 6, np.nan],
    [np.inf, np.nan, 7],
    [8, 6, 3]])

# tensor([[5., 6., nan],
#         [inf, nan, 7.],
#         [8., 6., 3.]])
  • 把 nan 值设置为 0

import torch
import numpy as np

a = torch.Tensor(
    [[5, 6, np.nan],
    [np.inf, np.nan, 7],
    [8, 6, 3]])

# where的第一行为条件限制,如果满足条件,则选择第二行数值,否则选择第三行数值作为输出
change_A = torch.where(
    torch.isnan(a),
    torch.full_like(a, 0),
    a)

# tensor([[5., 6., nan],
#         [inf, nan, 7.],
#         [8., 6., 3.]])
# tensor([[5., 6., 0.],
#         [inf, 0., 7.],
#         [8., 6., 3.]])
  • 把 inf 值设置为 0

import torch
import numpy as np

a = torch.Tensor(
    [[5, 6, np.nan],
    [np.inf, np.nan, 7],
    [8, 6, 3]])

# where的第一行为条件限制,如果满足条件,则选择第二行数值,否则选择第三行数值作为输出
change_B = torch.where(
        torch.isinf(a),
        torch.full_like(a, 0),
        a)

# tensor([[5., 6., nan],
#         [inf, nan, 7.],
#         [8., 6., 3.]])
# tensor([[5., 6., nan],
#         [0., nan, 7.],
#         [8., 6., 3.]])
  •  附录 torch.full_like()函数

import torch
import numpy as np

a = torch.Tensor(
    [[5, 6, np.nan],
    [np.inf, np.nan, 7],
    [8, 6, 3]])

# torch.full_like(input, fill_value, …) 返回与 input 相同 size,单位值为 fill_value 的矩阵
# 如下面这个例子,a 为 3*3 的 tensor
change_C = torch.full_like(a, 0, )

# tensor([[0., 0., 0.],
#         [0., 0., 0.],
#         [0., 0., 0.]])
  • 附录 numpy中的取 nan 和 inf 

import numpy as np

a = np.array([6,4,-7,np.nan,np.inf])

# 使用0代替数组x中的nan元素,使用有限的数字代替inf元素
y = np.nan_to_num(a)
print(y)

# [ 6.00000000e+000  4.00000000e+000 -7.00000000e+000  0.00000000e+000
#   1.79769313e+308]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值