假设我们有这样的一个 tensor,我们需要把其中的 inf 和 nan 填充成别的数字
import torch
import numpy as np
a = torch.Tensor(
[[5, 6, np.nan],
[np.inf, np.nan, 7],
[8, 6, 3]])
# tensor([[5., 6., nan],
# [inf, nan, 7.],
# [8., 6., 3.]])
-
把 nan 值设置为 0
import torch
import numpy as np
a = torch.Tensor(
[[5, 6, np.nan],
[np.inf, np.nan, 7],
[8, 6, 3]])
# where的第一行为条件限制,如果满足条件,则选择第二行数值,否则选择第三行数值作为输出
change_A = torch.where(
torch.isnan(a),
torch.full_like(a, 0),
a)
# tensor([[5., 6., nan],
# [inf, nan, 7.],
# [8., 6., 3.]])
# tensor([[5., 6., 0.],
# [inf, 0., 7.],
# [8., 6., 3.]])
-
把 inf 值设置为 0
import torch
import numpy as np
a = torch.Tensor(
[[5, 6, np.nan],
[np.inf, np.nan, 7],
[8, 6, 3]])
# where的第一行为条件限制,如果满足条件,则选择第二行数值,否则选择第三行数值作为输出
change_B = torch.where(
torch.isinf(a),
torch.full_like(a, 0),
a)
# tensor([[5., 6., nan],
# [inf, nan, 7.],
# [8., 6., 3.]])
# tensor([[5., 6., nan],
# [0., nan, 7.],
# [8., 6., 3.]])
-
附录 torch.full_like()函数
import torch
import numpy as np
a = torch.Tensor(
[[5, 6, np.nan],
[np.inf, np.nan, 7],
[8, 6, 3]])
# torch.full_like(input, fill_value, …) 返回与 input 相同 size,单位值为 fill_value 的矩阵
# 如下面这个例子,a 为 3*3 的 tensor
change_C = torch.full_like(a, 0, )
# tensor([[0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.]])
-
附录 numpy中的取 nan 和 inf
import numpy as np
a = np.array([6,4,-7,np.nan,np.inf])
# 使用0代替数组x中的nan元素,使用有限的数字代替inf元素
y = np.nan_to_num(a)
print(y)
# [ 6.00000000e+000 4.00000000e+000 -7.00000000e+000 0.00000000e+000
# 1.79769313e+308]