题目如下:
描述:
N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学不交换位置就能排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1, 2, …, K,他们的身高分别为T1, T2, …, TK,则他们的身高满足T1 < T2 < … < Ti , Ti > Ti+1 > … > TK (1 <= i <= K) 。
你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
输入:
第一行整数 N,表示同学的总数
第二行整数数组,空格隔开,表示 N 位同学身高
输出:
最少需要几位同学出列
样例输入:
8
186 186 150 200 160 130 197 200
样例输出:
4
题目分析:这个题目其实就是一个求最长递增子序列的题目,关于最长递增子序列的求法,我已经在文章[http://blog.csdn.net/iniegang/article/details/47681191]中做了具体实现,这里就不再做介绍了。
我的解题思路:
首先分别求出每一个元素对应的最长递增子序列和最长递减子序列
然后将对应的最长递增子序列长度和最长递减子序列长度对应相加,找到最大的一个。
最后用总的人数减去最大的这个和,由于多减了1,再加上即可。
具体实现代码如下:
import java.util.Scanner;
public class Main