Redis 实现延迟队列的方案

在分布式系统中,延迟队列是一种常见的需求,例如订单超时取消、任务定时执行等。Redis 作为高性能的内存数据库,提供了多种实现延迟队列的方案。本文将介绍几种不同的 Redis 方案,并分析其优缺点及适用场景。

Sorted Set

利用 Redis 的 Sorted Set 数据结构,将消息 ID 作为成员,到期时间戳作为分数。通过 ZRANGEBYSCORE 命令获取已到期的消息。

const (
	queueName = "delay_queue"
)

type ZSetDelayQueue struct {
	rds          *redis.Client
	scanInterval time.Duration
}

// PushToDelayQueue :将任务推到延迟队列中,任务会在指定的延迟时间后可用。
// val: 需要推送的值, score: 过期时间点
func (d *ZSetDelayQueue) PushToDelayQueue(ctx context.Context, val string, score float64) error {
	_, err := d.rds.ZAdd(ctx, queueName, redis.Z{Score: score, Member: val}).Result()
	if err != nil {
		return err
	}

	return nil
}

// PopFromDelayQueue :从延迟队列中取出过期的任务
func (d *ZSetDelayQueue) PopFromDelayQueue(ctx context.Context) ([]string, error) {
	nowStr := strconv.FormatInt(time.Now().Unix(), 10)
	var vals []string

	// 使用Redis事务保证原子性
	err := d.rds.Watch(ctx, func(tx *redis.Tx) error {
		// 获取过期的任务
		var err error
		vals, err = d.rds.ZRangeByScore(ctx, queueName, &redis.ZRangeBy{
			Min: "0",
			Max: nowStr,
		}).Result()
		if err != nil {
			return err
		}

		// 删除过期的任务
		if len(vals) == 0 {
			return nil
		}
		_, err = tx.TxPipelined(ctx, func(pipe redis.Pipeliner) error {
			pipe.ZRemRangeByScore(ctx, queueName, "0", nowStr)
			return nil
		})

		return nil
	}, queueName)
	if err != nil {
		return nil, err
	}

	return vals, nil
}

✅ 优点

  1. 实现简单,易于理解
  2. 支持任意精度的延迟时间
  3. 可以按时间顺序处理任务
  4. 支持快速查找和删除特定任务

❌缺点

  1. 需要轮询检查到期任务
  2. 大量任务时性能可能下降
  3. 没有内置的消费者竞争机制

适用场景

  1. 任务量中等的系统
  2. 对延迟精度要求不是特别高的场景
  3. 需要支持任务优先级调整的场景

Key Expiration + Pub/Sub

利用 Redis 的键过期通知功能,为每个延迟任务设置一个过期键,当键过期时通过 Pub/Sub 机制通知消费者。

type KeyExpDelayQueue struct {
	rdb *redis.Client
}

var (
	expireKeyPrefix = "expire_key"
)

func (q *KeyExpDelayQueue) AddTask(ctx context.Context, val string, delay time.Duration) error {
	// 设置过期键
	expireKey := expireKeyPrefix + val

	// 设置过期时间
	return q.rdb.Set(ctx, expireKey, val, delay).Err()
}

func (q *KeyExpDelayQueue) StartConsume(ctx context.Context, handler func(val string) error) error {
	// 确保开启了键空间通知
	q.rdb.ConfigSet(ctx, "notify-keyspace-events", "Ex")

	// 订阅过期事件
	pubsub := q.rdb.Subscribe(ctx, "__keyevent@0__:expired")
	defer pubsub.Close()

	// 监听处理过期事件
	ch := pubsub.Channel()
	for msg := range ch {
		// 检查key是否为关注的过期键
		if msg.Payload[:len(expireKeyPrefix)] != expireKeyPrefix {
			continue
		}

		// 处理过期事件
		val := msg.Payload[len(expireKeyPrefix):]
		if err := handler(val); err == nil {
			q.rdb.Del(ctx, msg.Payload)
		}
	}

	return nil
}

✅优点

  1. 不需要轮询,事件驱动模式
  2. 实现简单,占用资源少
  3. 任务触发及时

❌缺点

  1. 需要开启 Redis 键空间通知功能
  2. 可靠性较低,如果消费者断开连接可能丢失通知
  3. 无法查看待处理的任务列表
  4. 无法实现任务优先级

适用场景

  1. 对可靠性要求不高的场景
  2. 任务量较小的系统
  3. 需要实时触发的场景

Sorted Set方案进阶版

为了解耦任务发现和任务处理、支持多消费者模型和可靠性保障,在原sorted set方案基础上引入新结构和处理机制

  • Stream+Consumer Group:
  • List+Block:
Stream+Consumer Group

使用 Redis Stream 作为消息队列,结合有序集合存储延迟信息。定时将到期消息从有序集合移动到 Stream 中,由消费者组处理

Stream+Consumer Group方案支持多消费者组,那么多个消费者就可以进行并行处理,提升处理效率。并且Stream还提供了消息确认机制,确保任务能被处理

type streamDelayQueue struct {
	rdb                            *redis.Client
	delayKey, streamKey, groupName string
}

var (
	moveTaskScript = `
		local tasks = redis.call('ZRANGEBYSCORE', KEYS[1], '0', ARGV[1])
		local count = 0
		for _, task in ipairs(tasks) do
			redis.call('XADD', KEYS[2], '*', 'task', task)
			redis.call('ZREM', KEYS[1], task)
			count = count + 1
		end
		return count
`
)

// AddTask 添加任务到延迟队列
func (q *streamDelayQueue) AddTask(ctx context.Context, taskID string, delay time.Duration) error {
	// 1. 计算过期时间
	expireAt := time.Now().Add(delay).Unix()

	// 2. 将任务推到有序集合
	return q.rdb.ZAdd(ctx, q.delayKey, redis.Z{Score: float64(expireAt), Member: taskID}).Err()
}

// MoveReadyTasks 将准备好的任务移动到任务队列
func (q *streamDelayQueue) MoveReadyTasks(ctx context.Context) (int64, error) {
	return q.rdb.Eval(ctx, moveTaskScript, []string{q.delayKey, q.streamKey}, time.Now().Unix()).Int64()
}

// ConsumeTasks 消费任务
func (q *streamDelayQueue) ConsumeTasks(ctx context.Context, consumerName string, count int64) ([]redis.XStream, error) {
	return q.rdb.XReadGroup(ctx, &redis.XReadGroupArgs{
		Group:    q.groupName,
		Consumer: consumerName,
		Streams:  []string{q.streamKey, ">"},
		Count:    count,
		Block:    0,
	}).Result()
}

// AckTask 确认任务
func (q *streamDelayQueue) AckTask(ctx context.Context, taskID string) error {
	return q.rdb.XAck(ctx, q.streamKey, q.groupName, taskID).Err()
}
List+Block

使用 Redis List 作为队列,结合定时任务将到期的延迟任务添加到队列中,消费者使用阻塞操作等待任务。

本方案则支持多消费者进行竞争

type listBlockDelayQueue struct {
	rdb               *redis.Client
	delayKey, listKey string
}

// AddTask 添加任务到延迟队列
func (q *listBlockDelayQueue) AddTask(ctx context.Context, taskID string, delay time.Duration) error {
	// 计算执行时间
	execTime := time.Now().Add(delay).Unix()

	// 添加到有序集合
	return q.rdb.ZAdd(ctx, q.delayKey, redis.Z{
		Score:  float64(execTime),
		Member: taskID,
	}).Err()
}

// MoveReadyTasks 将到期任务移动到List
func (q *listBlockDelayQueue) MoveReadyTasks(ctx context.Context) (int64, error) {
	now := time.Now().Unix()

	script := `
        local tasks = redis.call('ZRANGEBYSCORE', KEYS[1], '0', ARGV[1])
        local count = 0
        for i, task in ipairs(tasks) do
            redis.call('LPUSH', KEYS[2], task)
            redis.call('ZREM', KEYS[1], task)
            count = count + 1
        end
        return count
    `

	result, err := q.rdb.Eval(ctx, script, []string{q.delayKey, q.listKey}, now).Int64()
	return result, err
}

// ConsumeTask 消费任务(堵塞操作)
func (q *listBlockDelayQueue) ConsumeTask(ctx context.Context, timeout time.Duration) (string, error) {
	result, err := q.rdb.BRPop(ctx, timeout, q.listKey).Result()
	if err != nil {
		return "", err
	}

	return result[1], nil
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值