动态规划算法

动态规划算法

动态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。
动态规划题目特点:
1.计数
有多少种方式走到右下角
有多少种方法选出K个数使得和是Sum
2.求最大最小值
从左上角走到右下角路径的最大数字和
最长上升子序列长度
3.求存在性
取石子游戏,先手是否必胜
能不能选出k个数使得和是Sum
做题思路:
1.确定状态 研究最优策略的最后一步 化为子问题
2.转移方程 根据子问题定义直接得到
3.初始条件和边界情况
4.计算顺序(利用之前计算的结果)

接下来我会拿三道题来进行解释
第一道
思路:

  1. 首先我们确定状态(简单的来说解动态规划的时候需要开一个数组,数组的每个元素f[i]或者f[i][j]代表什么),在确定状态我们需要两个意识:最后一步是什么,子问题
    比如这题最后一步是刚好付清27,最少的硬币组合
    子问题呢我们可以这样想在这里插入图片描述
    我们不关心前面的k-1硬币数是怎么拼出27-Ak的,而且我们不知道ak和K,但是我们确定前面的硬币拼出了27-Ak,这样是不是我们只要考虑前面的27-ak的硬币数加一就是结果了,问题规模是不是更小了,这个就是子问题通过解决子问题最后得到最后的答案

  2. 转移方程:设置状态f[x]=最少用多少枚硬币拼出X 对于任意的X,我们有 在这里插入图片描述

  3. 初始条件和边界情况
    X-2,X-5,X-7小于0怎么办?我们怎么停下来?我们可以定义拼不出来X就为无穷大f[X]=正无穷,例如f[-1]=f[-2]=…=正无穷
    f[1]=min{f[-1]+1,f[-4]+1,f[-6]+1}=正无穷,初始条件f[0]=0

  4. 计算顺序:我们要得到f[27],所以我们直接来一个for循环,从1到27

public static int coinChange(int[] coins, int amount) {
        int n=coins.length;
        int[] f=new int[amount+1];
        f[0]=0;int i,j;
        for (i = 1; i <=amount ; i++) {
            f[i]=Integer.MAX_VALUE;
            for (j = 0; j <n ; j++) {
                if (i>=coins[j]&&f[i-coins[j]]!=Integer.MAX_VALUE){
                    f[i]=Math.min(f[i-coins[j]]+1,f[i]);
                }
            }
        }
        if (f[amount]==Integer.MAX_VALUE){
            f[amount]=-1;
        }
        return f[amount];
    }

第二道
在这里插入图片描述
思路:

  1. 确定状态最后一步,无论机器人用何种方式到达右下角,总有最后挪动的一步:-向右或者向下。右下角的坐标设为(m-1,n-1)那么前一步机器人一定是在(m-2,n-1)或者(m-1,n-2)
    子问题机器人有X种方式从左上角走到(m-2,n-1),有Y种方式从左上角走到(m-1,n-2),则机器人有X+Y种方式走到(m-1,n-1)。
    状态:设f[i][j]为机器人有多少种方式从左上角走到(i,j)

  2. 转移方程

在这里插入图片描述

  1. 初始条件和边界情况,f[0][0]=1,因为机器人只有一种方式到达左上角,边界情况,当i=0或者j=0时候,只有一个方向过来->f[i][j]=1
  2. 计算顺序,先计算第一行,。。。第m-1行
public static int uniquePaths(int m, int n) {
        int[][] f=new int[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (i==0||j==0){
                    f[i][j]=1;
                }
                else {
                    f[i][j]=f[i-1][j]+f[i][j-1];
                }
            }
        }
        return f[m-1][n-1];
    }

第三道
在这里插入图片描述思路:

  1. 确定状态:最后一步:如果能跳到n-1,我们就考虑跳的最后一步,这一步是从i跳过来的,i<n-1。这时候两个条件要满足:可以跳到i,最后一步不超过跳跃的最大距离 n-1-i<=ai
    子问题:我们能不能跳到i(i<n-1),而我们原来是要求能不能跳到n-1
    状态:设f[j]表示能不能跳到j

  2. 转移方程:
    在这里插入图片描述

  3. 初始条件和边界情况:f[0]=true,因为一开始就在0

  4. 计算顺序:计算f[1],f[2]…f[n-1]时间复杂度O(N*2)

 public static boolean canJump(int[] nums) {
        int n=nums.length;
        boolean[] f=new boolean[n];
        f[0]=true;
        for (int j = 1; j <n ; j++) {
            f[j]=false;
            for (int i = 0; i <j ; i++) {
                if (f[i]&&i+nums[i]>=j){
                    f[j]=true;
                    break;
                }
            }
        }
        return f[n-1];
    }

这道题用动态规划时间复杂度有点大,这里还有贪心算法的解法可以了解一下
贪心算法代码它这里就是遍历的时候去比较最远的跳跃距离是多少,如果在某一下标的时候发现longmax比n-1大,则返回true,时间复杂度是O(n)

public static boolean canJump2(int[] nums) {
        int n=nums.length;
        int longmax=0;
        for (int i = 0; i <n ; i++) {
            if (i<=longmax){
                longmax=Math.max(longmax,i+nums[i]);
                if(longmax>=n-1)
                    return true;
            }
        }
        return false;
    }

动态规划算法大致就是这样了,主要按照四个步骤来做就比较简单了

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值