天线环境差,整机的无线性能会好吗?

俗话说“近朱者赤近墨者黑”,这说明环境对人的影响非常大。人是这样,天线更是如此。

那么,环境是怎样影响天线呢?而天线的环境又是怎样影响整机的无线性能呢?在这里,班妹想跟你唠叨天线环境跟整机性能之间的那些事~~

对很多无线终端产品而言,整机无线性能的调优,最大的难点并非在于天线单体的设计,而在于产品结构、堆叠、材质等因素给天线预留的“可见”环境,及产品内部其它零部件产生的电磁干扰等“不可见”环境;从某种程度上讲,天线的环境,对产品整机的无线性能几乎起着决定性的作用。

好了,闲言少叙,今日份重点奉上:

一、天线的环境概述与分类
二、天线之间的信号干扰案例
三、天线基础知识概述
四、小结


一、天线的环境概述与分类

这里天线的环境,主要针对内置类天线,其环境大概可以笼统地分为以下几类。

1、预留空间(面积、高低、位置、净空)
预留的空间,指产品在设计过程中为天线预留的空间是否充足,主要涉及天线设计区域的面积、天线距离主板的高度、天线的安装位置、净空区域等方面。

1)预留给天线本体的面积
根据波长-频率的反比关系,天线所需满足的频率越低,波长越长,预留给天线区域的宽度和长度决定着天线的最低频率。

2)天线所需的高度或距离
天线与主板间的高度(距离)也是重要的考量因素。一般来说,天线距离主板的高度至少需要8MM以上,极端的环境下也至少要做到5MM以上。当天线的高度小于8MM时,天线的辐射效率会受限。
如下图1和图2分别为天线垂直于主板及平行于主板放置时的情况。
这里写图片描述
图1

这里写图片描述
图2

3)天线的位置
天线的位置,指的是天线在产品内部结构当中固定的位置,需要考量产品内部的结构层叠,尽量远离干扰源,提供较好的环境给天线以实现良好的效果,并方便工厂端组装。

4)净空
净空,指的是天线竖直面投影区域内的空旷面积(上下范围都要考虑)。在天线的投影区域范围内,不要铺地(尤其是板

这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if name == 'main': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵,
最新发布
06-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值