pandas删除重复列

需求: 因某种原因,数据列出现重复的数据,怎样实现重复数据删除
场景分析: 一般而言,我们日常经常要处理重复行数据的删除,且只需要drop_duplicates方法就能实现。那么,重复的列数据无法直接通过drop_duplicate方法实现。这时,就可以巧妙的用到一个关键方法:转置 。我们可以通过转置把列数据转为行数据,再删除重复行数据,最后再次转置即可。
转置方法: df.T
实例

import pandas as pd
import numpy as np

#创建一个带有重复列的数据框df2
df1=pd.DataFrame(np.arange(12).reshape((4,3)),columns=list('abc'))
df2=pd.concat([df,df[['a']]],axis=1)
df2

在这里插入图片描述

#两次转置实现重复列数据删除
df=df2.T.drop_duplicates().T
df

在这里插入图片描述
可以参考另一种情景的解决方法
删除列名相同但数据不同的列

  • 6
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值