互补码定义、类型、生成、码跳多址(使用跳码的CDMA)应用
1. 定义
1.1 引言
2G和3G中(主要是3G)使用了第一代CDMA技术,比如IS-95,使用的是64位walsh码。但是由于第一代CDMA技术在设计扩频码和CDMA系统架构的时候是分离的,导致一个说法“CDMA系统必须受到干扰的影响”流行。而如果同时设计扩频码和CDMA系统架构,可以使系统免受干扰(分为多址干扰 MAI 和多径干扰 MPI )影响,这在“REAL”(real environment adapted linearization,真实环境自适应线性化,由台湾成功大学陈晓华教授提出)方法中可以实现,而此方法中必须使用正交互补码。如果非周期ACF的和对于除零移位之外的所有偶数移位都必须为零(即,和是增量函数),则序列可以称为一对互补序列。
传统扩频码:Gold码,Walsh码,Kasami码,m序列,OVSF码等等。
同时,设计扩频码由于数量有限,随着用户的增加,如何将有限的扩频码分给更多的用户?
⟶
\longrightarrow
⟶跳码多址
PS:多址干扰MAI是由于系统异步而导致
1.2 缩略词
缩略 | 定义 |
---|---|
ACF | auto-correlation function自相关函数 |
CCF | cross-correlation function互相关函数 |
MAI | multiple access interference多址干扰 |
MPI | multi-path interference多径干扰 |
PG | processing gain处理增益,即序列长度 |
2. 类型
相关特性计算
- | 周期序列 | 非周期序列 |
---|---|---|
自相关函数 | ϕ ( x , x ; τ ) ≜ ∑ i = 0 N − 1 x i x i + τ ∗ \phi \left(\mathbf{x,x};\tau \right)\triangleq \sum_{i=0}^{N-1}x_i x_ {i+\tau}^*\qquad ϕ(x,x;τ)≜∑i=0N−1xixi+τ∗ | ϕ ′ ( x , x ; τ ) ≜ ∑ i = 0 N − 1 x i x i + τ ∗ − ∑ i = 0 τ − 1 x i x i + τ ∗ \phi' \left(\mathbf{x,x};\tau \right)\triangleq \sum_{i=0}^{N-1}x_i x_ {i+\tau}^*-\sum_{i=0}^{\tau-1}x_i x_{i+\tau}^*\qquad ϕ′(x,x;τ)≜∑i=0N−1xixi+τ∗−∑i=0τ−1xixi+τ∗ |
互相关函数 | ϕ ( x , y ; τ ) ≜ ∑ i = 0 N − 1 x i y i + τ ∗ \phi \left(\mathbf{x,y};\tau \right)\triangleq \sum_{i=0}^{N-1}x_i y_ {i+\tau}^*\qquad ϕ(x,y;τ)≜∑i=0N−1xiyi+τ∗ | ϕ ′ ( x , y ; τ ) ≜ ∑ i = 0 N − 1 x i y i + τ ∗ − ∑ i = 0 τ − 1 x i y i + τ ∗ \phi' \left(\mathbf{x,y};\tau \right)\triangleq \sum_{i=0}^{N-1}x_i y_ {i+\tau}^*-\sum_{i=0}^{\tau-1}x_i y_{i+\tau}^*\qquad ϕ′(x,y;τ)≜∑i=0N−1xiyi+τ∗−∑i=0τ−1xiyi+τ∗ |
2.1 原始互补码
非正交。由1960s雷达研究驱动。1961年,Golay提出了一组互补序列,它被定义为两种元素的一对相等长且有限的序列 A : { A 1 , A 2 , . . . , A M } ; B : { B 1 , B 2 , . . . , B M } A: \{A_1,A_2,...,A_M\};B: \{B_1,B_2,...,B_M\} A:{A1,A2,...,AM};B:{B1,B2,...,BM},其性质是一个序列中具有任意给定间隔 τ \tau τ的相似元素对的数量等于另一序列中具有相同给定间隔 τ \tau τ的不同元素对的数量。
2.2 完全互补码
Naoki Suehiro提出。完全互补码对于任何一个码都具有理想的ACF,对于任何两个码都有CCF。与Golay码相比,完全互补码应该分配一组M元素码,并且该互补码的集合大小为K。
C
=
(
C
1
C
2
⋯
C
K
)
T
=
(
c
1
,
1
c
1
,
2
⋯
c
1
,
M
c
2
,
1
c
2
,
2
⋯
c
2
,
M
⋮
⋮
⋱
⋮
c
K
,
1
c
K
,
2
⋯
c
K
,
M
)
C= \begin{pmatrix} C_1 & C_2 & \cdots & C_K \\ \end{pmatrix} ^T= \begin{pmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,M} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,M} \\ \vdots & \vdots & \ddots & \vdots \\ c_{K,1} & c_{K,2} & \cdots & c_{K,M} \\ \end{pmatrix}
C=(C1C2⋯CK)T=
c1,1c2,1⋮cK,1c1,2c2,2⋮cK,2⋯⋯⋱⋯c1,Mc2,M⋮cK,M
其中
c
k
,
m
=
[
c
k
,
m
(
1
)
c
k
,
m
(
2
)
⋯
c
k
,
m
(
N
)
]
,
k
∈
(
1
,
2
,
⋯
,
K
)
,
m
∈
(
1
,
2
,
⋯
,
M
)
c_{k,m}=\begin{bmatrix}c_{k,m} (1) & c_{k,m} (2) & \cdots & c_{k,m} (N) \end{bmatrix},k \in (1,2,\cdots, K), m \in (1,2,\cdots, M)
ck,m=[ck,m(1)ck,m(2)⋯ck,m(N)],k∈(1,2,⋯,K),m∈(1,2,⋯,M)
令
c
k
,
m
(
n
)
∈
{
−
1
,
1
}
,
n
∈
(
1
,
2
,
⋯
,
N
)
c_{k,m}(n) \in \lbrace-1, 1 \rbrace,n \in (1,2, \cdots, N)
ck,m(n)∈{−1,1},n∈(1,2,⋯,N)
每行分给一个用户,最多分给
K
K
K个用户,每个用户应该使用M个元素码,
完全互补码中
K
=
M
=
N
K=M=\sqrt{N}
K=M=N,所有理想正交互补码都满足
K
=
M
K=M
K=M
2.3 扩展互补码
正交。完全互补码中集合大小 N \sqrt{N} N等于元素码长度的开方,太小,不足以支持更多用户。因此,为了增加集合大小以支持基于互补码的CDMA系统中的更多用户,引入扩展互补码(254)。
2.4 超级互补码
台湾成功大学陈晓华教授提出。
完全互补码和扩展互补码的限制:
a.为了保持足够大的集合大小,完全互补码和扩展互补码都必须使用非常长的元素码。长元素码需要高采样率,将极大地增加中央处理单元(CPU)的信号处理负载,从而降低整体处理速度。
b.使用非常长的元素码也将使得在固定的信号处理能力下提高数据传输速率变得非常困难。随着数据速率的增加,比特持续时间将大大减少,从而使芯片宽度更短。这将使得接收机很难与发送的数据流保持良好的同步。
c.长元素码的应用也将使实现各种速率匹配算法以支持多媒体无线通信变得非常困难。处理增益固定为
M
N
MN
MN
我们的目标是保持理想正交特性追求更大的集合:超互补码,其名称是由于其优越的性质,即其集合大小可以达到其最大值,等于超互补码的处理增益。
2.5 成对互补码
非正交。台湾成功大学陈晓华教授提出。
统一码unitary codes:
a.准正交码(例如m序列、Gold码、Kasami码等);
b.正交码(如Walsh-Hadamard序列、OVSF码等)。
我们的目标是保持理想正交特性追求更小的簇(因为簇越大,收发器越复杂):如果互补码集的簇大小限制为2,则提出广义成对互补(GPC)码集(268)
成对互补码最重要的优点是它们成对工作,这样发射机就可以使用单载波(而不是多载波)调制解调器发送CDMA信号。因此,CDMA收发器的复杂性可以大大降低。
2.6 列互补码
台湾成功大学陈晓华教授提出。
列式互补码的引入主要基于N移位正交序列[254,255],只要它们的相对码片移位正好等于N个码片,该序列被定义为总是与其对等序列正交的序列。注意,N移位正交序列包括相当大的序列组,不应将其视为理想正交序列,因为如果它们的相对码片移位不完全等于N个码片,则它们可能彼此不正交。重要的是要注意,N移位正交序列中的N值通常是偶数,这是因为奇数相对移位会使消除任何两个码之间的所有非零互相关电平变得极其困难。在所有N移位正交序列中,最常用的是偶数移位正交序列,如果任何两个码的相对码片移位为偶数,则可以确保它们之间的互相关函数为零。
列式互补码的研究非常重要,因为它提供了一种在统一框架下生成许多不同类型互补码的非常通用的方法。此外,对列式互补码的研究也有助于我们更好地理解任何理想正交互补码(如完全互补码和超互补码等)的理想正交性与码结构之间的关系。
我们将这一相当大的理想正交互补码组称为“列互补码”的原因是,代码的生成过程和正交性都可以通过代码的不同列之间的相关函数很好地呈现,如果我们将一个码群(应该分配给CDMA的一个用户,通常由M个元素码组成)写入矩阵。基于这种方法,我们将证明,实际上所有理想正交互补码都可以通过码的列相关函数来生成和分析。
示例:
一个完整的互补代码集,其参数
(
M
,
N
,
K
)
(M,N,K)
(M,N,K)为
(
2
,
4
,
2
)
(2,4,2)
(2,4,2)
列互补码参数
(
K
,
M
,
N
,
R
)
(K,M,N,R)
(K,M,N,R),
R
R
R表示使用N移位正交序列生成该特定列方向互补代码集的事实。N移位正交序列被定义为当且仅当在N个偏移码片处呈现理想正交性的序列。
列式互补码形成了一个相当大的正交互补码超集,它可能包含本书中讨论过的大多数正交互补码。这是列式互补码最有趣的特性。
3. 生成
完全互补码:
有Hadama矩阵A、B、D
A = ( + + + − ) A= \begin{pmatrix} +& + \\ +& - \\ \end{pmatrix} A=(+++−)
B = ( + + + − ) B= \begin{pmatrix} +& + \\ +& - \\ \end{pmatrix} B=(+++−)
D = ( + + − − ) D= \begin{pmatrix} +& + \\ -& - \\ \end{pmatrix} D=(+−+−)
则令矩阵 C C C中, C 1 = ( b 11 A 1 b 12 A 2 ⋯ b 1 N A N ) C_1= \begin{pmatrix} b_{11}\mathbf{A_1} & b_{12}\mathbf{A_2} & \cdots b_{1N}\mathbf{A_N} \\ \end{pmatrix} C1=(b11A1b12A2⋯b1NAN)
…
C N = ( b N 1 A 1 b N 2 A 2 ⋯ b N N A N ) C_N= \begin{pmatrix} b_{N1}\mathbf{A_1} & b_{N2}\mathbf{A_2} & \cdots b_{NN}\mathbf{A_N} \\ \end{pmatrix} CN=(bN1A1bN2A2⋯bNNAN)
可知 C i C_i Ci长度 N 2 N^2 N2
又令矩阵 E E E中, E i j = ( c i 1 d j 1 c i 2 d j 2 ⋯ c i N d j N ⋯ c i N 2 d j N ) E_{ij}= \begin{pmatrix} c_{i1}d_{j1} & c_{i2}d_{j2} & \cdots c_{iN}d_{jN} & \cdots & c_{iN^2}d_{jN} \\ \end{pmatrix} Eij=(ci1dj1ci2dj2⋯ciNdjN⋯ciN2djN)
可知 E i j E_{ij} Eij长度为 N 2 N^2 N2,矩阵 E E E大小为 N ∗ N N*N N∗N
b
(
k
)
b^{(k)}
b(k),
k
=
1
,
2
,
⋯
,
K
k=1,2,\cdots,K
k=1,2,⋯,K
c
m
(
k
)
\mathbf{c}_{m}^{(k)}
cm(k),
m
=
1
,
⋯
,
M
m=1,\cdots,M
m=1,⋯,M
c
m
(
k
)
=
c
m
,
1
(
k
)
,
⋯
,
c
m
,
N
(
k
)
\mathbf{c}_{m}^{(k)}=c_{m,1}^{(k)},\cdots,c_{m,N}^{(k)}
cm(k)=cm,1(k),⋯,cm,N(k) ,
m
=
1
,
⋯
,
M
m=1,\cdots,M
m=1,⋯,M
3.1 流程框图
4.码跳多址应用
4.1 流程
4.2 跳变模式
4.2.1 随机跳码模式
每个码跳变模式都是一个独立的随机变量序列,每个随机变量都均匀分布在M个可用正交互补码的集合C上,每个正交互补码包含M个元素码。(无记忆码跳变模式)
4.2.2 周期跳码模式
CHMA是CDMA基础上加上code hopping(跳码),使得同样数量的扩频码用于更多数量
K
K
K的用户。
code hopping sequences(跳码序列,属于一个特定用户)的码数量(周期)(长度)
P
P
P越大,代码冲突越多,误码率BER越高。所有跳码序列集合表示为
S
\mathbf{S}
S,其中有
K
K
K个序列(此处
K
K
K与互补码中
K
K
K行/最多分给
K
K
K个用户无关,并且由于完全互补码的
K
=
M
K=M
K=M,只留下
M
M
M),则有
S = ( S 1 S 2 ⋯ S K ) T = ( s 1 ( 0 ) s 1 ( 1 ) ⋯ s 1 ( P − 1 ) s 2 ( 0 ) s 2 ( 1 ) ⋯ s 2 ( P − 1 ) ⋮ ⋮ ⋱ ⋮ s K ( 0 ) s K ( 1 ) ⋯ s K ( P − 1 ) ) S= \begin{pmatrix} S_1 & S_2 & \cdots & S_K \\ \end{pmatrix} ^T= \begin{pmatrix} s_{1}(0) & s_{1}(1) & \cdots & s_{1}(P-1) \\ s_{2}(0) & s_{2}(1) & \cdots & s_{2}(P-1) \\ \vdots & \vdots & \ddots & \vdots \\ s_{K}(0) & s_{K}(1) & \cdots & s_{K}(P-1) \\ \end{pmatrix} S=(S1S2⋯SK)T= s1(0)s2(0)⋮sK(0)s1(1)s2(1)⋮sK(1)⋯⋯⋱⋯s1(P−1)s2(P−1)⋮sK(P−1)
其中 s k ( p ) = m , 1 ≤ m ≤ M , C m ∈ C , p = ( 0 , 1 , ⋯ , P − 1 ) s_k(p)=m, 1\leq m \leq M, C_m \in C, p=(0,1,\cdots,P-1) sk(p)=m,1≤m≤M,Cm∈C,p=(0,1,⋯,P−1)
例如, s 3 ( 4 ) = 7 s_3(4)=7 s3(4)=7,表示:
- 在一个周期内的第(4+1)个时隙
- 第(3)个用户
- 将集合 C C C中 C ( 7 ) C_{(7)} C(7)分配给用户
我们期待更大的用户容量,即更大的 K K K。更大的可用互补码行数 M M M,在一定误码率下,可以带来更大的 K K K和 P P P。
Tips:
快速跳码:跳码序列中的码在每个symbol time跳变;
一个时隙覆盖一个bit,每个bit由一个
C
m
,
m
∈
[
1
,
M
]
C_m,m \in [1,M]
Cm,m∈[1,M]扩展;
4.2.3 自适应跳码模式
4.3 处理增益PG
M M M个元素代码(element code),即 M M M个载波,每个元素代码有 N N N个码片(chip),则处理增益PG为 M N MN MN。
范例:2个user(多用户带来多址干扰),2条path(多径带来多径干扰),M个载波。假设user1跳变模式 { C 3 , C 8 , C 4 ⋯ } \lbrace C_3,C_8,C_4 \cdots\rbrace {C3,C8,C4⋯},user2跳变模式 { C 2 , C 8 , C 5 ⋯ } \lbrace C_2,C_8,C_5\cdots \rbrace {C2,C8,C5⋯}
correlator | 载波 1 | ⋯ \cdots ⋯ | 载波 M M M |
---|---|---|---|
user1 path1 | $\cdots bit3, bit2, bit1 $ | ⋯ \cdots ⋯ | |
user1 path2 | $\cdots bit3, bit2, bit1 $ | ⋯ \cdots ⋯ | |
user2 path1 | $\cdots bit3, bit2, bit1 $ | ⋯ \cdots ⋯ | |
user2 path2 | $\cdots bit3, bit2, bit1 $ | ⋯ \cdots ⋯ |
当前正在处理user1 path1第 i i i个bit,时间间隔 τ k l \tau_{kl} τkl,表第 k k k 个user( k ∈ 1 , ⋯ , K k \in {1,\cdots, K} k∈1,⋯,K )、第 l l l条path( l ∈ 1 , ⋯ , L l \in {1,\cdots, L} l∈1,⋯,L)的第 i i i个bit还需 τ k l \tau_{kl} τkl开始处理。
user1载波1的处理结果:
b
1
,
1
=
b
11
ϕ
(
c
3
,
1
(
1
)
,
c
3
,
1
;
0
)
+
b
11
ϕ
(
c
3
,
1
(
1
)
,
c
2
,
1
(
2
)
;
−
τ
11
)
+
b
21
ϕ
(
c
3
,
1
(
1
)
,
c
3
,
1
(
1
)
;
−
τ
21
)
+
b
21
ϕ
(
c
3
,
1
(
1
)
,
c
2
,
1
(
2
)
;
−
τ
21
)
b_{1,1}=b_{11}\phi(\mathbf{c}_{3,1}^{(1)},\mathbf{c}_{3,1};0)+b_{11}\phi(\mathbf{c}_{3,1}^{(1)},\mathbf{c}_{2,1}^{(2)};-\tau_{11}) \\ +b_{21}\phi(\mathbf{c}_{3,1}^{(1)},\mathbf{c}_{3,1}^{(1)};-\tau_{21})+b_{21}\phi(\mathbf{c}_{3,1}^{(1)},\mathbf{c}_{2,1}^{(2)};-\tau_{21})
b1,1=b11ϕ(c3,1(1),c3,1;0)+b11ϕ(c3,1(1),c2,1(2);−τ11)+b21ϕ(c3,1(1),c3,1(1);−τ21)+b21ϕ(c3,1(1),c2,1(2);−τ21)
其中下标 b k , m b_{k,m} bk,m b k i b_{ki} bki
由于一个bit要经过所有 M M M个载波,所以第一个bit的处理结果是所有载波的结果求和:
user1的第一个bit(包括所有载波)处理结果:
b 1 = b 1 , 1 + b 1 , 2 + b 1 , M = b 11 ∑ m = 1 M ϕ ( c 3 , m ( 1 ) , c 3 , m ( 1 ) ; 0 ) + b 11 ∑ m = 1 M ϕ ( c 3 , m ( 1 ) , c 3 , m ( 1 ) ; − τ 12 ) + b 21 ∑ m = 1 M ϕ ( c 3 , m ( 1 ) , c 2 , m ( 1 ) ; − τ 21 ) + b 21 ∑ m = 1 M ϕ ( c 3 , m ( 1 ) , c 2 , m ( 1 ) ; − τ 22 ) = M N b 11 + 0 + 0 + 0 = M N b 11 b_1=b_{1,1}+b_{1,2}+b_{1,M} =b_{11}\sum_{m=1}^M\phi(\mathbf{c}_{3,m}^{(1)},\mathbf{c}_{3,m}^{(1)};0)+b_{11}\sum_{m=1}^M\phi(\mathbf{c}_{3,m}^{(1)},\mathbf{c}_{3,m}^{(1)};-\tau_{12}) +b_{21}\sum_{m=1}^M\phi(\mathbf{c}_{3,m}^{(1)},\mathbf{c}_{2,m}^{(1)};-\tau_{21})+b_{21}\sum_{m=1}^M\phi(\mathbf{c}_{3,m}^{(1)},\mathbf{c}_{2,m}^{(1)};-\tau_{22}) =MNb_{11}+0+0+0=MNb_{11} b1=b1,1+b1,2+b1,M=b11∑m=1Mϕ(c3,m(1),c3,m(1);0)+b11∑m=1Mϕ(c3,m(1),c3,m(1);−τ12)+b21∑m=1Mϕ(c3,m(1),c2,m(1);−τ21)+b21∑m=1Mϕ(c3,m(1),c2,m(1);−τ22)=MNb11+0+0+0=MNb11
user1的第二个bit处理结果:
相比于第一个bit,还需考虑与前面一个bit的相关性
b
11
∑
m
=
1
M
ϕ
(
c
3
,
m
(
1
)
,
c
8
,
m
(
1
)
;
N
−
τ
12
)
)
b_{11}\sum_{m=1}^M\phi(\mathbf{c}_{3,m}^{(1)},\mathbf{c}_{8,m}^{(1)};N-\tau_{12}))
b11∑m=1Mϕ(c3,m(1),c8,m(1);N−τ12))仍为0
由以上推导可知,处理结果主要受两种干扰,多用户间的多址干扰,多路径的多径干扰,由于采用的互补码的良好自相关和互相关性,系统已实现无干扰。
b
k
i
b_{ki}
bki表示来自用户k的第i位。
c
(
k
)
i
,
m
c(k)_{i,m}
c(k)i,m是第k个用户的Ci的第m个元素代码,其中
1
≤
i
,
m
≤
M
1≤i,m≤M
1≤i,m≤M。每个元素代码有
N
N
N个码片。
τ
k
l
\tau_{kl}
τkl表示第
k
k
k个用户和第
l
l
l个路径的信道延迟。(a) 检测到用户1的第一位。(b) 检测到用户1的第二位。© 检测到用户1的第三位。}
4.4 系统模型
4.4.1 信道编码与解码模型
信道编码:纠错码(ECC, error correcting coding),表示为 C : ( k , n , m ) \mathcal{C}:(\mathbf{k},\mathbf{n},\mathbf{m}) C:(k,n,m): k \mathbf{k} k表示信息比特数, n \mathbf{n} n表示码字比特总数,冗余 r = n − k r=\mathbf{n}-\mathbf{k} r=n−k,码率 R c ≜ k / n R_c \triangleq \mathbf{k}/\mathbf{n} Rc≜k/n, m \mathbf{m} m表示编码器存储器,与纠错能力有关。
b
k
(
t
)
b_k(t)
bk(t)为用户
k
k
k在时间
t
t
t信道编码的数据比特。
则发射端(信道编码)可表示为
s
(
t
)
=
∑
k
=
1
K
∑
m
=
1
M
∑
l
=
1
L
{
h
k
l
b
k
(
t
−
τ
k
−
τ
k
l
)
c
i
,
m
(
k
)
2
p
cos
[
2
π
f
m
(
t
−
τ
k
−
τ
k
l
)
+
θ
k
]
}
+
n
(
t
)
s(t)=\sum\limits^K_{k=1}\sum\limits^M_{m=1}\sum\limits^L_{l=1}\lbrace h_{kl}b_k(t-\tau_k-\tau_{kl})\mathbf{c}^{(k)}_{i,m} \sqrt{2p} \cos\left[2\pi f_m(t-\tau_k-\tau_{kl})+\theta_k \right]\rbrace +n(t)
s(t)=k=1∑Km=1∑Ml=1∑L{hklbk(t−τk−τkl)ci,m(k)2pcos[2πfm(t−τk−τkl)+θk]}+n(t)
其中 τ k \tau_k τk表示第 k k k个用户的时延, τ k l \tau_{kl} τkl表示第 k k k个用户、第 l l l条路径的信道时延, θ k \theta_k θk表示第 k k k个初始相位, f m f_m fm表示第 m m m条子载波, p p p表示信号功率, h k l h_{kl} hkl表示第 k k k个用户、第 l l l条路径的信道增益, c i , m ( k ) \mathbf{c}^{(k)}_{i,m} ci,m(k)表示第 k k k个用户、互补码 C i \mathbf{C}_i Ci的第 m m m个元素码, n ( t ) = ∑ k = 1 K ∑ l = 1 L n k l ( t ) n(t)=\sum\limits^K_{k=1}\sum\limits^L_{l=1}n_{kl}(t) n(t)=k=1∑Kl=1∑Lnkl(t)
使用相关接收,接收端可表示为
d
k
^
=
∑
m
=
1
M
∫
0
T
s
(
t
)
cos
(
2
π
f
m
t
+
ϕ
)
c
i
,
m
(
k
)
d
t
,
1
≤
i
≤
M
\widehat{d_k}=\sum\limits^M_{m=1}\int^T_0 s(t) \cos (2\pi f_m t + \phi) \mathbf{c}^{(k)}_{i,m}dt,1\leq i\leq M
dk
=m=1∑M∫0Ts(t)cos(2πfmt+ϕ)ci,m(k)dt,1≤i≤M
4.4.2 信道模型
y ( t ) = h [ t ] x [ t ] + w [ t ] y(t)=h[t]x[t]+w[t] y(t)=h[t]x[t]+w[t]
当延迟要求与信道相干时间相比较短, h [ t ] h[t] h[t]可视为常数。
4.5 性能分析
如表,按照单径/多径、上行(异步)/下行(同步)链路可分为四种场景。由于两个相同的互补码的相对偏移大于一个码片时,它们在同一时隙中保持两个用户之间的完美正交性,而同步情形时没有相对偏移,所以下行链路同步情形BER较高。
场景 | 单径 | 多径 |
---|---|---|
下行(同步)链路 | A | B |
上行(异步)链路 | C | D |
4.5.1 代码冲突概率
代码冲突的概率与误码率的性能呈正相关。当用户总数 K K K大于可用互补代码行数 M M M,必定会发生两个及以上的用户使用相同的互补代码的情况。如果是同步下行链路,那么就会产生代码冲突,导致误码率增加;如果是异步上行链路,两个相同的互补码的相对偏移大于一个码片时,它们在同一时隙中可以保持两个用户之间完美正交,不会产生代码冲突,误码率较低。
==场景A(单径、同步下行链路)==中,一个用户选择的互补码和其他某个用户相同的概率可表示为
q
D
L
=
q
H
C
C
D
L
=
1
P
E
[
H
S
u
S
v
(
0
)
]
=
1
P
∑
S
u
,
S
v
∈
S
H
S
u
S
v
(
0
)
K
!
(
K
−
2
)
!
=
∑
S
u
,
S
v
∈
S
H
S
u
S
v
(
0
)
P
K
(
K
−
1
)
q^{DL}=q^{DL}_{HCC}=\frac{1}{P}\mathbf{E}[H_{\mathbf{S}_u\mathbf{S}_v }(0)] =\frac{1}{P}\frac{\sum_{\mathbf{S}_u,\mathbf{S}_v \in \mathbf{S}} H_{\mathbf{S}_u\mathbf{S}_v }(0)}{\frac{K!}{(K-2)!} } =\frac{\sum_{\mathbf{S}_u,\mathbf{S}_v \in \mathbf{S}}H_{\mathbf{S}_u\mathbf{S}_v }(0)}{PK(K-1)}
qDL=qHCCDL=P1E[HSuSv(0)]=P1(K−2)!K!∑Su,Sv∈SHSuSv(0)=PK(K−1)∑Su,Sv∈SHSuSv(0)
其中
q
H
C
C
D
L
q^{DL}_{HCC}
qHCCDL表示在没有多径效应的情况下与其他CH序列之一相互冲突的码冲突概率,
HCC表示Hamming cross-correlation汉明互相关,
H
S
u
S
v
(
τ
)
H_{\mathbf{S}_u\mathbf{S}_v(\tau)}
HSuSv(τ)是HCC汉明互相关函数。
于是,场景A(单径、同步下行链路)中,在所有用户中产生代码冲突的概率可表示为
p
‾
D
L
=
1
−
(
1
−
q
D
L
)
K
−
1
\overline{p}^{DL}=1-\left(1-q^{DL} \right)^{K-1}
pDL=1−(1−qDL)K−1