poj3411

本文介绍了POJ3411这道题目,讨论了如何解决给定n个城市和m条路径的最短费用问题。关键在于理解路径费用规则,并考虑特殊情况,如边可以被多次经过,以及如何避免无限循环。通过深搜结合最优化剪枝和可行性剪枝,标记顶点访问次数以判断循环,并利用邻接表处理多条边的情况。同时,文章提到了几个需要注意的细节,例如到达目标城市后不需要返回,以及n=1时的特例处理。
摘要由CSDN通过智能技术生成

题目有难度,首先是题意的理解,其次是容易漏掉一些特殊情况,深搜+最优化剪枝+可行性剪枝

大致题意为:给定n个城市,以及m条路径,路径描述如下:ai, bi, ci, Pi, Ri

其中ai表示起点城市,bi表示终点城市,路径是收费的,费用的选取有如下规则:

若在经过该路径之前(包含该路径的两个城市,即算作已经经过),若存在某个城市为ci,则该条路径的费用为Pi,否则为Ri。现在要从城市1到城市n,问需要的最少费用是多少?

本题一个非常容易错误的想法是认为:任意一条路径不能经过两次,即最多经过一次。其实得出这个结论有一定道理:从环的角度来说,如果不断在某个环上循环,那么权值之和只会增加。但是不能因为这个特殊情况就否认某条边可以经过多余一次的事实。由于本题边的权值比较特殊,如果是一般情况权值已经确定,不存在不定因素,那么的确每条边只能经过一次。现在由于边权值的选择有上述两种情况,故有可能经过一条边多次,然后取得最小值的情况(不难想象)。

但是如果不对边的访加以限制,那么就会出现无限循环的情况,所以有没有什么方法可以标记循环情况,若为循环情况则退出,答案是肯定的。由于两个点之间的边可能有多条,故标记边是不容易的,这里可以采取标记点访问的次数来标识是否进入循环࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值