基于TensorFlow的mnist手写数字图片识别

在学习了BP算法后在mnist数据集上做了练习,特在此总结。
- mnist
包含7万张手写黑白数字图片,每张图片是28*28像素,纯黑像素值0,纯白1,数据集标签长度是10的一维数组,包含对应数字出现的概率。通过input_data函数加载数据集,是4个压缩包,包含训练集50000张,验证集5000张和测试集10000张,One-hot=True采用独热码的形式加载。

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('./data/',one_hot=True)
Extracting ./data/train-images-idx3-ubyte.gz
Extracting ./data/train-labels-idx1-ubyte.gz
Extracting ./data/t10k-images-idx3-ubyte.gz
Extracting ./data/t10k-labels-idx1-ubyte.gz
mnist.train.num_examples
55000
mnist.validation.num_examples
5000
mnist.test.num_examples
10000
mnist.train.images[0].shape
(784,)
mnist.train.labels[0]
array([0., 0., 0., 0., 0., 0., 0., 1., 0., 0.])
batch_size = 200
xs,ys = mnist.train.next_batch(batch_size)
print(xs.shape)
print(ys.shape)
(200, 784)
(200, 10)

通过next_batch函数从训练集中随机抽取batch_size个样本喂入神经网络,并将样本像素值和标签传给xs,ys。
- 模块化搭建网络
TensorFlow框架方便我们模块化搭建神经网络,思考:我们想通过BP算法实现手写数字图片识别,需要三个步骤:前向传播,反向传播,测试。为了提高模型的泛化性能,加入优化方法。
- forward
前向传播中,我们需要完成定义输入、获得参数、获得输出:

import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

我们构建了2层NN,隐藏层有500个神经元,输入层有784个神经元,代表输入的每张图片的784个像素,输出层有10个神经元,代表数据集的标签。

def get_weight(shape, regularizer):
    w = tf.Variable(tf.truncated_normal(shape,stddev=0.1))#除去较大离散点的正态分布
    if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
    return w

定义get_weight()函数用来对权重w进行设定,传入参数是w的size和正则化系数,初始化权重后将L2正则化损失加入到总损失中。

def get_bias(shape):  
    b = tf.Variable(tf.zeros(shape))  
    return b
def forward(x, regularizer):
    w1 = get_weight([INPUT_NODE, LAYER1_NODE], regularizer)
    b1 = get_bias([LAYER1_NODE])
    y1 = tf.nn.relu(tf.matmul(x, w1) + b1)#激活函数使用relu:y=max(x,0)

    w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)
    b2 = get_bias([OUTPUT_NODE])
    y = tf.matmul(y1, w2) + b2
    return y

参数偏执设定和前向传播过程,传入参数x为输入,返回预测结果y。
- Backward
反向传播完成训练,参数优化。

def backward(mnist):
    #输入占位
    x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
    y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
    #预测值由前向传播得到
    y = mnist_forward.forward(x, REGULARIZER)
    global_step = tf.Variable(0, trainable=False)

    #交叉熵+softmax,考虑正则化系数
    ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    cem = tf.reduce_mean(ce)
    loss = cem + tf.add_n(tf.get_collection('losses'))

    #指数衰减学习率
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        mnist.train.num_examples / BATCH_SIZE, 
        LEARNING_RATE_DECAY,
        staircase=True)

    #梯度下降学习方法
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)

    #滑动平均,实现和训练过程同步
    ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    ema_op = ema.apply(tf.trainable_variables())
    with tf.control_dependencies([train_step, ema_op]):
        train_op = tf.no_op(name='train')

    #实例化模型对象,用于后续保存
    saver = tf.train.Saver()

    #with结构初始化所有参赛
    with tf.Session() as sess:
        init_op = tf.global_variables_initializer()
        sess.run(init_op)

        for i in range(STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})

            #反向传播过程中每隔一定轮数保存模型,并产生3个文件(图结构.mata,当前参数名.index,当前参数.data
             if i % 1000 == 0:
                print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)#将训练模型和训练轮数保存到指定路径

在反向传播中,先对输入x和实际标签y_占位,前向传播得到预测值,优化参数,实例化模型用于保存,开启会话先对参数进行初始化,训练模型更新参数和损失函数,一定轮数打印和保存模型。
其中,参数优化用来提高模型的泛化能力,包括交叉熵+softmax,指数衰减学习率,滑动平均,正则化。
指数衰减学习率使学习率随着训练轮数动态变化,需要提前赋值学习率基数和学习衰减率。
滑动平均用来得到在一定时间内所有参数,w,b的平均值,提前赋值平均衰减率。
学习方法是梯度下降,每次喂入batch_size个训练样本最小化损失函数。
此时,我们的神经网络模型已经搭建好了,若想用于测试,需要定义测试函数用来加载模型。
- Test

def test(mnist):
    #将当前图设置为默认图并保存,与with使用,用于将已定义好的NN复现
    with tf.Graph().as_default() as g:
        x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
        y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])#标签真实值
        y = mnist_forward.forward(x, None)
        #加载已保存的滑动平均值
        ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
        ema_restore = ema.variables_to_restore()
        saver = tf.train.Saver(ema_restore)
        #准确率评估
        #y是batch_size个数据的预测结果,大小[batch_size,10],argmax()返回最大值元素对应索引值
        #通过tf.equal()函数与实际标签张量对比,相等返回true,不等返回false,再通过cast函数将布尔型转为实数
        #通过reduce_mean()求平均值,得到本组数据在NN上的准确率
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        while True:
            with tf.Session() as sess:
                #加载NN模型
                ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
                #若模型和指定路径存在,则将模型加载到会话中
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]#恢复保存时运行的轮数
                    accuracy_score = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
                    print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
                else:
                    print('No checkpoint file found')
                    return
            time.sleep(TEST_INTERVAL_SECS)

其中,TensorFlow是基于计算图的操作,我们在图中添加operation作为节点,就是对张量的计算,在所有节点添加完成后,开启session,完成对指定节点的计算。在test函数中,将当前图设置为默认图,在默认图中添加张量输入值、标签、预测值、加载参数和输出模型准确率,with session开启会话完成对当前图的计算:加载保存模型,计算准确率。
截图运行backward和test程序结果:
这里写图片描述
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值