51Nod 1181 质数中的质数(质数筛法)

本文介绍了一种寻找“质数中的质数”的算法实现,即那些在质数列表中位置也是质数的质数。文章通过使用质数筛法预处理所有小于10^6的质数,并存储这些质数,以便后续快速查找大于等于给定数值N的最小的“质数中的质数”。
摘要由CSDN通过智能技术生成

1181 质数中的质数(质数筛法)
题目来源: Sgu
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注
如果一个质数,在质数列表中的编号也是质数,那么就称之为质数中的质数。例如:3 5分别是排第2和第3的质数,所以他们是质数中的质数。现在给出一个数N,求>=N的最小的质数中的质数是多少(可以考虑用质数筛法来做)。
Input
输入一个数N(N <= 10^6)
Output
输出>=N的最小的质数中的质数。
Input示例
20
Output示例
31

我的想法蛮简单。首先素数筛,刚学会,哈哈,然后,把素数都存起来。先判断序列号是不是素数,在要求序列号对应的素数比n大,然后输出。脑子有点蒙,最近确实有点累,我要睡啦。任务算是完成了。明天学一下乘法逆元,这个东西关系到好几道题。必须要会呀。附上代码

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define qwe 1000000
int a[qwe];
int b[qwe];
void prime(void)
{
    int i, j;
    int t=1;
    int n=qwe;
    a[1]=1;
    for(i=2;i<n;i++)
    {
        if(a[i]==0)
        {
            for(j=i+i;j<n;j+=i)
            {
                a[j]=1;
            }
        }
    }
    for(i=1;i<n;i++)
    {
        if(a[i]==0)
        b[t++]=i;

    }
}

int main()
{
    int i, j, k, l, n, m, t;
    prime();

    scanf("%d",&n);
    for(i=1;;i++)
    {
        if(a[i]==0&&b[i]>=n)
        {
            printf("%d\n",b[i]);
            break;
        }   
    }
    return 0;
}

我其实一直担心数组会不会太大,要求的内存不够用,所幸。就这样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值