【 51nod 1847 】奇怪的数学题
题目
点这里看题目。
分析
是挺奇怪的…
以下定义质数集合为 P P P, p i p_i pi为第 i i i个质数。
定义 m p ( x ) mp(x) mp(x)为 x x x的最小质因子,则可以得到:
s g c d ( a , b ) = gcd ( a , b ) m p ( gcd ( a , b ) ) sgcd(a,b)=\frac{\gcd(a,b)}{mp(\gcd(a,b))} sgcd(a,b)=mp(gcd(a,b))gcd(a,b)
这个比较显然。然后可以娴熟地变换式子得到:
∑ i = 1 n ∑ j = 1 n s g c d ( i , j ) k = ∑ d = 2 n ( d m p ( d ) ) k ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ [ gcd ( i , j ) = 1 ] = ∑ d = 2 n ( d m p ( d ) ) k ( 2 ∑ i = 1 ⌊ n d ⌋ φ ( i ) − 1 ) \begin{aligned}\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k&=\sum_{d=2}^n\left(\frac d{mp(d)}\right)^k \sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac n d\rfloor}[\gcd(i,j)=1]\\&=\sum_{d=2}^n\left(\frac d{mp(d)}\right)^k \left(2\sum_{i=1}^{\lfloor\frac n d\rfloor}\varphi(i)-1\right)\end{aligned} i=1∑nj=1∑nsgcd(i,j)k=d=2∑n(mp(d)d)ki=1∑⌊dn⌋j=1