[51nod 1847]奇怪的数学题

本文详细解析了51nod 1847题目的解题思路,通过杜教筛和第二类斯特林数来计算最小质因子的贡献,实现了质数和合数的贡献相加,解决了自然溢出问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【 51nod 1847 】奇怪的数学题

题目

  点这里看题目。

分析

  是挺奇怪的…
  以下定义质数集合为 P P P p i p_i pi为第 i i i个质数。
  定义 m p ( x ) mp(x) mp(x) x x x的最小质因子,则可以得到:
s g c d ( a , b ) = gcd ⁡ ( a , b ) m p ( gcd ⁡ ( a , b ) ) sgcd(a,b)=\frac{\gcd(a,b)}{mp(\gcd(a,b))} sgcd(a,b)=mp(gcd(a,b))gcd(a,b)
  这个比较显然。然后可以娴熟地变换式子得到:
∑ i = 1 n ∑ j = 1 n s g c d ( i , j ) k = ∑ d = 2 n ( d m p ( d ) ) k ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ [ gcd ⁡ ( i , j ) = 1 ] = ∑ d = 2 n ( d m p ( d ) ) k ( 2 ∑ i = 1 ⌊ n d ⌋ φ ( i ) − 1 ) \begin{aligned}\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k&=\sum_{d=2}^n\left(\frac d{mp(d)}\right)^k \sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac n d\rfloor}[\gcd(i,j)=1]\\&=\sum_{d=2}^n\left(\frac d{mp(d)}\right)^k \left(2\sum_{i=1}^{\lfloor\frac n d\rfloor}\varphi(i)-1\right)\end{aligned} i=1nj=1nsgcd(i,j)k=d=2n(mp(d)d)ki=1dnj=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值