PAT甲级1002. A+B for Polynomials (25)

1002. A+B for Polynomials (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

This time, you are supposed to find A+B where A and B are two polynomials.

Input

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < ... < N2 < N1 <=1000.

Output

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output

3 2 1.5 1 2.9 0 3.2

陌生的单词短语

Polynomials  n.多项式

Be supposed to 意为应该,被期望,理应做某事,主语是物时,他表示,本应做,用于表示某事本应该发生而没有发生 egThe train was supposedto arrive half an hour ago.

Exponents  指数

Coefficients 系数

Respectively  各自的,分别的

Accurate   精确的

Decimal  adj.小数的;十进制的n.小数

Please be accurate to 1 decimal place   精确到小数点后一位


这个题的意思是:就是初中做数学题的“合并同类项”,就酱紫。一开始我的想法是什么呢:建立结构体,

包含(contains)系数和指数,然后把两次的结构存到一个结构体数组里,排序,把相互重复的加起来,等于0的去除掉。确实

些麻烦,并且,我并没有通过全部的样例,所以,我就换了很多博主的那种方法,就是建立一个空间为1000的数组,数组下标为

指数,数组内容为系数,最后遍历两边,第一次遍历找到非零项个数,然后输出,第二次把所有非零项都输出。这个我刚开始也

想到了,之所以没一开始就写,我是担心开的数组会很大,事实上,我觉得如果非零项比较少,并且指数之间相差比较大,这种

方法有点浪费空间,比如,指数只有1和1000,这俩,你还是要开这么大的数组空间,浪费的是比较大的,我之所以想利用结构

体,就是希望能减少空间的浪费。这个最佳的做法我觉得是利用链表。等STL学了一丢丢之后,我重新写,并且把多项式加法,

减法,除法都写一下,特别是除法,去年也就是17年天梯赛的团体赛就有一个题考的是除法。

附代码:

#include<stdio.h>
#include<string.h>
int main()
{
	int k, i, j;
	double a[10005];
	memset(a,0,sizeof(a));
	int num1;
	double num2;
	scanf("%d",&k);
	for(i=0;i<k;i++)
	{
		scanf("%d %lf",&num1,&num2);
		a[num1]=num2;
	}
	scanf("%d",&k);
	for(i=0;i<k;i++)
	{
		scanf("%d %lf",&num1,&num2);
		if(a[num1]!=0)
		a[num1]=a[num1]+num2;
		else a[num1]=num2;
	}
	int flag=0;
	for(i=0;i<10005;i++)
	{
		if(a[i]!=0)
		flag++;
	}
	printf("%d",flag);
	for(i=10000;i>=0;i--)
	{
		
		if(a[i]!=0)
		{
			if(flag!=0)
			printf(" ");
			printf("%d %.1lf",i,a[i]);
			flag--;
		}
	}
	return 0;
}



内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
1002 A+B for Polynomials 是一道编程题目,通常是在考察Java中处理多项式加法的问题。在这个问题中,你需要编写一个程序,让用户输入两个多项式的系数(如a_n*x^n + a_{n-1}*x^{n-1} + ... + a_1*x + a_0的形式),然后计算它们的和,并按照同样的形式表示出来。 在Java中,你可以创建一个`Polynomial`类,包含一个数组来存储系数和最高次数的信息。用户输入的每个多项式可以被解析成这样的结构,然后通过遍历并累加系数来完成加法操作。最后,将结果转换回字符串形式展示给用户。 以下是简化版的代码示例: ```java class Polynomial { int[] coefficients; int degree; // 构造函数,初始化数组 public Polynomial(int[] coeffs) { coefficients = coeffs; degree = coefficients.length - 1; } // 加法方法 Polynomial add(Polynomial other) { Polynomial result = new Polynomial(new int[coefficients.length + other.coefficients.length]); for (int i = 0; i < coefficients.length; ++i) { result.coefficients[i] += coefficients[i]; } for (int i = 0; i < other.coefficients.length; ++i) { result.coefficients[i + coefficients.length] += other.coefficients[i]; } result.degree = Math.max(degree, other.degree); return result; } @Override public String toString() { StringBuilder sb = new StringBuilder(); if (degree >= 0) { for (int i = degree; i >= 0; --i) { sb.append(coefficients[i]).append('*x^').append(i).append(" + "); } // 移除最后一个 " + " sb.setLength(sb.length() - 2); } else { sb.append("0"); } return sb.toString(); } } // 主函数示例 public static void main(String[] args) { Polynomial poly1 = new Polynomial(...); // 用户输入第一个多项式的系数 Polynomial poly2 = new Polynomial(...); // 用户输入第二个多项式的系数 Polynomial sum = poly1.add(poly2); System.out.println("Result: " + sum); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值