论文导读
文章平均质量分 92
分享高水平论文
YoungerChina
目前从事存储与计算相关的架构设计和研发管理工作
展开
-
论文导读:用DNA作为计算和数据存储的通用化学基质
生物计算有望解决传统硅基计算在分子诊断、数据存储和信息安全等领域的应用局限。由于高度的可编辑性和可预测性,DNA是首选的计算及信息存储的基质。在化学综述中,团队重点探讨了DNA计算,尤其是在神经网络和区室化DNA电路等方向的研究最近进展。作者还讨论了DNA数据存储中包括DNA编码数据的写入、读取、检索和合成后编辑的新进展。最后,团队提出DNA计算与DNA数据存储的结合为未来的重要方向,将对信息技术和分析诊断的发展带来重大意义。原创 2024-03-10 18:07:15 · 1136 阅读 · 0 评论 -
论文导读:万卡集群训练大模型(by字节跳动)
字节跳动提出了万卡集群大模型训练架构MegaScale,并在12288个GPU上训练一个175B LLM模型时,用MegaScale实现了55.2%的MFU,比Megatron-LM提高了1.34倍;提供了万卡集群训练大模型的踩坑经验;证实了强大完备的训练基础设施(包含各种各样的诊断工具、监测工具、可视化工具等)对高效、稳定训练LLM至关重要;原创 2024-03-05 17:28:34 · 7000 阅读 · 0 评论 -
论文导读:消费级大模型Yi (零一万物技术揭密)
Yi模型家族是一系列展示出强大多维能力的自然语言和多模态模型。Yi模型家族基于6B和34B预训练语言模型,然后我们将其扩展到聊天模型、20万长上下文模型、深度扩展模型和视觉-语言模型。原创 2024-03-10 17:54:58 · 3255 阅读 · 0 评论 -
[FAST23论文导读]More Than Capacity- Performance-oriented Evolution of Pangu in Alibaba
本文介绍了Pangu存储系统如何不断地随着硬件技术和业务模型的发展而不断演进,提供具有100us级I/O延迟的高性能、可靠的存储服务。原创 2023-11-19 20:25:51 · 1219 阅读 · 0 评论 -
论文导读:fast21 Learning Cache Replacement with Cacheus
CACHEUS建立在LeCaR的成功之上。它在几个方面对LeCaR进行了改进。首先,虽然LeCaR主张使用经典的LRU和LFU,CACHEUS证明了使用更复杂的专家的重要性。其次,CACHEUS通过识别和消除其机器学习机制的冗余方面简化了LeCaR。第三,它创建了一个完全自适应的版本,也是轻量级的。最后,新的轻量级专家SR-LRU和CR-LFU改进了LeCaR的专家,以解决扫描和搅动这两个新的工作负载原语类型。通过这些改进,CACHEUS的表现优于LeCaR以及其他最先进的算法。原创 2023-11-12 22:57:13 · 1680 阅读 · 0 评论 -
【sosp23论文导读】Ditto:一个弹性自适应分离式内存缓存系统
Ditto首先提出了一个以客户端为中心的缓存框架,以在DM的计算池中高效地执行各种缓存算法,只依赖于远程内存访问。然后,Ditto采用了一种分布式自适应缓存方案,该方案基于多个缓存算法的实时性能自适应切换到最适合的缓存算法,以提高缓存命中率。原创 2023-11-04 19:15:25 · 1437 阅读 · 0 评论