专家观点:L1正则稀疏?

本文探讨了L1和L2正则化在防止机器学习模型过拟合中的作用,重点解释了L1正则化如何通过损失函数的特性诱导模型参数变得稀疏,从而实现特征选择。通过形象解释、数学推导和代码实现,阐述了L1正则化在二维平面上的几何意义和实际应用。
摘要由CSDN通过智能技术生成

原创:轮回Pan  Refinitiv创新实验室ARGO 

      

        机器学习中为了防止模型过拟合,通常会引入正则化(也称之为惩罚项)。常见的正则化有L1正则和L2正则,两者各有优缺点,而这里我们的关注点是为什么L1正则能导致模型参数稀疏化,而L2不能?

        以线性回归为例,其损失函数Loss加上正则项后的形式

L1的形式为:

 

L2的形式:

I . 形象解释 

 

        首先咱们来看看网上流传的一种形象化的解释,大家一定见过下面这两幅图:

1 L1正则化Loss Function

2 L2正则化Loss Function

 

假设有如下带L1正则化的损失函数:

其中J0是原始的损失函数,后面的一项是L1正则化项,α是正则化系数。因为L1正则化是权值的绝对值之和J0是带有绝对值符号的函数,因此J是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当在原始损失函数J后添加L1正则化项时,相当于对J0做了一个约束。令L=α∑|w|J=J0+L,此时变成在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值