这是一道经典的搜索题,我个人的理解是双重深度搜索:第一层搜索为搜索当前最短木棍的合法性(len),即在题目所给出的木棍长度中是否能组合出当前木棍的长度,第二层搜索是建立在第一层搜索的基础上,搜索当前最短木棍数目的合法性,即假设我们能从所给的木棍长度中组合出当前最短木棍长度,记当前木棍数为t,则t+=1,同时标记那些已经用来组合当前最短木棍的木棍为“用过”,继续在没用过的木棍中搜索是否能组合另一根当前最短木棍,有则t+=1,如果t=sum/len,(sum为所有木棍长度总和)则len为所求值。
以上只是解题的大体思路,要在合法时间内完成搜索,还必须剪枝。首先将截后木棍长度按降序排列,假设当前节点号为node,当前搜索长度为s(s从0开始,一步一步增加看是否能达到len)如果node满足len[node]+s<=len && mark[node]==0,那么在搜索下一节点时只需从node+1 开始搜索,而无须从0号开始搜索,以内0——node已经被搜索而无须重复搜索,另外还要注意,如果len[node]不符合条件,那么与len[node]等长的节点也不符合条件。
下面是网上一个大牛的代码,非本人。
#include<iostream>
using namespace std;
int a[64];
int mark[64];
int sum,len,sticks,num,rest;
bool flag;
void dfs(int t,int s,int node)
{
if(t==num) flag=1;
else if(s==len && rest%s==0 )
dfs(t+1,0,0); //第二层搜索
else
for(int i=node,pre=-1;i<sticks;i++)//只需搜索node之后的节点,pre是为了在该节点不符合的情况下,避 // 免搜索同等长度的节点
{
if( mark[i]==0&&a[i]!=pre && s+a[i]<=len )
{
pre=a[i];
mark[i]=1;
rest-=a[i];
dfs(t,s+a[i],i+1); //第一层搜索
mark[i]=0;
rest+=a[i];
if(flag==1 || node==0)return ;
}
}
}
int main()
{
while(cin>>sticks && sticks!=0)
{
int max=0;
sum=0,flag=0;
for(int i=0;i<sticks;i++)
{
cin>>a[i];
if(max<a[i])max=a[i];
sum+=a[i];
if(i>=1)//
{
int temp=a[i];
int j;
for(j=i-1;j>=0 && temp>a[j];j--)
a[j+1]=a[j];
a[j+1]=temp;
}
}
rest=sum;
for(len=max;len<=sum ;len++)
{
memset(mark,0,sizeof(mark));
if(sum%len==0)
{
num=sum/len;
dfs(0,0,0);
}
if(flag==1)break;
}
cout<<len<<endl;
}
}
测试数据:
64
5 8 6 1 4 5 8 2 1 6 4 2 3 6 2 5 8 7 9 2 1 4 3 6 5 4 7 8
2 6 5 1 4 5 3 6 5 6 2 1 4 7 8 9 5 2 1 9 4 7 5 2 3 6 9 4
5 8 9 2 4 6 3 6 9
answer:17
3
1 5 8
answer:14
9
15 3 2 11 4 1 8 8 8
answer:20
POJ 1011 题解
最新推荐文章于 2018-12-06 19:34:06 发布