我们研究的是int类型的数据类型。
int a = 2147483647;
int b = 1;
int c = a + b;
System.out.println(c);.
//输出结果为-2147483648
首先要知道int数据类型的取值范围是 -2^31 ~ 2^31-1 也就是(-2147483648 ~ 2147483647)
2147483647的二进制为0111 1111 1111 1111 1111 1111 1111 1111
对这个这个二进制数+1,结果为1000 0000 0000 0000 0000 0000 0000 0000 ,结果正好是
-2147483648
这时候会有人问,为什么这个结果不是-0?第一位不是符号位吗?
原因如下:
假设字长为n比特,原码、反码能够表示的有符号数真值范围都是[-2^(n-1) + 1, 2^(n-1)-1],而补码能够表示的真值范围是[-2n^-1, 2n^-1-1],最小值多出来了一个。以下我们假设n=8,那么原码/反码表示法的范围是[-127, 127],而补码表示法的范围是[-128, 127]。-128就是那特殊的一个,并且它在补码体系下没有原码和反码。
要搞清楚文章标题的问题,我们应该来看另一个特殊的数0。
在原码和反码表示法中,0有两种表示方式,分别为正0(0000 0000)和负0(1000 0000/1111 1111),然而在正常的算数中,0是不应该有符号的。补码表示法则没有这种区分,不论正0还是负0都会表示为0000 0000(负0取反加1丢掉溢出位后也是这个结果),所以补码正好能用1000 0000多表示一个数。根据上述补码表格中“递减”的规律,把1000 0000放在-127的后面,表示-128正合适(1000 0000 + 0111 1111 = 1111 1111 = -1),也符合符号位为1表示负数的惯例。
同理,n=16时(对应C语言的short),范围为[-32768, 32767];n=32时(对应C语言的int),范围为[-2147483648, 2147483647]。
总而言之,我们可以认为 1000 0000 0000 0000 0000 0000 0000 0000 的值就是-2147483648
参考资料
出处: