【java】剑指offer68-I_二叉搜索树的最近公共祖先

122 篇文章 0 订阅

题目描述

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树:  root = [6,2,8,0,4,7,9,null,null,3,5]

示例 1:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6 
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:所有节点的值都是唯一的。p、q 为不同节点且均存在于给定的二叉搜索树中。

参考解题思路: 利用二叉搜索数的特性,判断根节点与两个目标节点的大小关系,如下三种情况

1.根节点比两个目标节点都大则继续往root.left方向找最近公共节点

2.根节点比两个目标节点都小则继续往root.right方向找最近公共节点

3.根节点与两个节点相比,比一个大,比一个小,或者等于某个节点则该根节点为最近公共祖先节点

可用递归和迭代两种方式实现

方式一:递归

// 递归
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root.val > p.val && root.val > q.val) {
            return lowestCommonAncestor(root.left, p, q);
        } else if (root.val < p.val && root.val < q.val) {
            return lowestCommonAncestor(root.right, p, q);
        }
        return root;
    }

复杂度分析:
时间复杂度 O(N) : 其中 N 为二叉树节点数;每循环一轮排除一层,二叉搜索树的层数最小为logN (满二叉树),最大为 N(退化为链表)。
空间复杂度 O(N): 最差情况下,即树退化为链表时,递归深度达到树的层数 N 。

方式二:迭代

// 迭代
    public TreeNode lowestCommonAncestor2(TreeNode root, TreeNode p, TreeNode q) {
        while (true) {
            if (root.val > p.val && root.val > q.val) {
                root = root.left;
            } else if (root.val < p.val && root.val < q.val) {
                root = root.right;
            } else {
                break;
            }
        }
        return root;
    }

复杂度分析:
时间复杂度 O(N): 其中 NN 为二叉树节点数;每循环一轮排除一层,二叉搜索树的层数最小为 logN (满二叉树),最大为 N (退化为链表)。
空间复杂度 O(1) : 使用常数大小的额外空间。

作者:jyd
链接:https://leetcode-cn.com/problems/er-cha-sou-suo-shu-de-zui-jin-gong-gong-zu-xian-lcof/solution/mian-shi-ti-68-i-er-cha-sou-suo-shu-de-zui-jin-g-7/
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值