7-6 列出连通集 (25分)

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:
按照"{ v1 v2… v​k}"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

思路解析:
所谓连通集,也就是一个完整的遍历过程,设置visit[n]来确保每次遍历中,每个点只会被遍历一次。

#include<stdio.h>
#include<algorithm>
#include<queue>
using namespace std;
int g[10][10],n,i,m,visit[10];
queue<int >q;
void getg(){
	fill(g[0],g[0]+n*n,0);
	int x,y;
	for(i=0;i<m;i++){
		scanf("%d %d",&x,&y);
		g[x][y]=g[y][x]=1;
	}
}
void DFS(int x){
	int j;
	visit[x]=1;
	printf("%d ",x);
	for(j=0;j<n;j++){
		if(g[x][j]==1 && visit[j]==0)	DFS(j);
	}
}
void DFStravel(){
	fill(visit,visit+n,0);
	for(i=0;i<n;i++){
		if(!visit[i]){
			printf("{ ");
			DFS(i);
			printf("}\n");
		}
	}
}
void BFStravel(){
	fill(visit,visit+n,0);
	for(i=0;i<n;i++){
		if(!visit[i]){
			printf("{ ");
			q.push(i);
			printf("%d ",i);
			visit[i]=1;
			while(!q.empty()){
				int temp=q.front();
				q.pop();
				for(int j=0;j<n;j++){
					if(g[temp][j] && !visit[j]){
						printf("%d ",j);
						q.push(j);
						visit[j]=1;
					}
				}
			}
			printf("}\n");
		}
	}
}
int main(){
	scanf("%d %d",&n,&m);
	getg();
	DFStravel();
	BFStravel();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值