给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v1 v2… vk}"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
思路解析:
所谓连通集,也就是一个完整的遍历过程,设置visit[n]来确保每次遍历中,每个点只会被遍历一次。
#include<stdio.h>
#include<algorithm>
#include<queue>
using namespace std;
int g[10][10],n,i,m,visit[10];
queue<int >q;
void getg(){
fill(g[0],g[0]+n*n,0);
int x,y;
for(i=0;i<m;i++){
scanf("%d %d",&x,&y);
g[x][y]=g[y][x]=1;
}
}
void DFS(int x){
int j;
visit[x]=1;
printf("%d ",x);
for(j=0;j<n;j++){
if(g[x][j]==1 && visit[j]==0) DFS(j);
}
}
void DFStravel(){
fill(visit,visit+n,0);
for(i=0;i<n;i++){
if(!visit[i]){
printf("{ ");
DFS(i);
printf("}\n");
}
}
}
void BFStravel(){
fill(visit,visit+n,0);
for(i=0;i<n;i++){
if(!visit[i]){
printf("{ ");
q.push(i);
printf("%d ",i);
visit[i]=1;
while(!q.empty()){
int temp=q.front();
q.pop();
for(int j=0;j<n;j++){
if(g[temp][j] && !visit[j]){
printf("%d ",j);
q.push(j);
visit[j]=1;
}
}
}
printf("}\n");
}
}
}
int main(){
scanf("%d %d",&n,&m);
getg();
DFStravel();
BFStravel();
return 0;
}