stable diffusion换装超强插件inpaint anything,轻松实现AI变装!

我们将会用到Stable Diffusion WebUI 中安装的 Inpaint Anything 扩展,如何你还没有SD本地环境,可以先查看其他配置本地SD环境(安装实在是太复杂了,对Mac用户也不友好)或者使用一些在线的Stable Diffusion WebUI工具。

在这里插入图片描述

第1步:上传图片到Inpaint Anything 中

点击Inpaint Anything 标签页下,将图片拖动到输入图像框中。

第2步:运行分割模型

等待图片上传完成后,点击“运行Segment Anything”按钮,然后等待,你就能看到这样的语义分割图,不同的颜色代表了图片中识别出的不同对象。

第 3 步:创建蒙版

使用画笔在分割图中标识出想要重绘的裙子区域,不需要整件衣服涂黑,每件衣服每个部分点一个点就可以了,鼠标放在图片上时按键盘S键可以放大图片,按R复原。

然后点击“创建蒙版”按钮。

在这里插入图片描述

如果发现蒙版未覆盖您想要的所有区域,请返回分割图并绘制更多区域。

我发现裙子的肩带没有被选中,返回分割图增了一个点。得到如下图:

“展开蒙版区域”这个是翻译的问题,英文为“Expand mask region”,意思是向外圈稍微扩展一下遮罩的大小。

“根据草图修剪蒙版”是指:从蒙版中减去绘制的新区域。

“根据草图添加蒙版”是指:将绘制的新区域添加到蒙版中。

这里就不展开详述了。现在蒙版已经很满意了。

第 4 步:将蒙版发送至重绘

可以在Inpaint Anything扩展中重绘,但更推荐将蒙版发送到图生图页面进行重绘。

点击“仅蒙版”这个标签页,然后点击获取蒙版,就会获得如下一张黑白的蒙版页面,如果你有Photoshop使用经验的话,这个蒙版和PS中的蒙版是一样的。

点击“发送到图生图”按钮

返回到图生图的标签页下,我们就能看到如下的图片和蒙版出现在“上传重绘模版”的标签下。

点击“自动检测尺寸”的按钮,将重绘的图片尺寸自动改为输入蒙版的尺寸:

然后选择你喜欢的大模型,最好是真实系的大模型,我这里以<基础模型_ XL_v1.0 refiner 1.0>为例。

在提示词中输入:

Woman in pink floral dress.

蒙版内容处理选择:潜空间噪声或者空白潜空间,其他项保持默认即可。

生成数量可以改为一次生成4张。

看一下重绘后的效果,呃。。。。。。虽然是换装了但是也没有全换,别着急,我们可以使用下面的技巧进一步提升图片的质量。

Advanced inpainting techniques

进一步绘制照片

  1. 方法一 调整重绘照片的尺寸

    如果你清楚潜空间扩散原理的话,就会知道我们图像都是缩小到512x512px的更小图去进行加噪和去噪的,如果我们的原图比例很特殊就可能导致画面会出现一些畸变,没关系 我们也不用了解具体的原理,只要尽量让宽或高是512、768、1024 这样的尺寸就好。

重复上面的操作,再来看我们重绘后的照片。

2.方法二 替换大模型

如果图片重绘效果不理想,可以替换掉大模型,使用真实视觉修复模型。

我们将基础大模型换成了其他的真实系模型。比如:麦橘、DreamShaper等。

3.方法三 自定义服装的图案

使用ControlNet IP-Adapter 换上你喜欢的图案。

我需要用到两个控制网络,

第一个使用Canny

启用:✅

预处理器:Canny 硬边缘

模型:control_v11p_sd15_canny [d14c016b]

控制权重:0.6

第二个使用IP-adapter

启用:✅

预处理器:ip-adapter

模型:ip-adapter_sd15_plus [32cd8f7f]

控制权重:0.9

然后点击生成按钮。

还可以将您想要的衣服的精确图像放入 IP adapter 的图像控制窗中,如图

如有侵权,请联系删除。

写在最后

这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Stable Diffusion Inpainting 教程与使用指南 #### 了解Stable Diffusion中的Inpainting功能 Stable Diffusion是一个强大的生成模型,能够执行多种图像处理任务,其中包括inpainting(图像修复)。此过程涉及利用给定的原始图片以及指定区域的掩码来填充缺失部分或修改特定区域的内容[^1]。 #### 准备工作环境 为了实现这些操作,需先设置好运行环境。这通常意味着安装Python解释器及相关依赖库,并下载预训练好的Stable Diffusion权重文件。对于初学者来说,可以考虑获取一套完整的AIGC学习资源包,其中包含了详细的指导文档和其他辅助工具[^2]。 #### 实现简单Inpainting实例 下面展示了一个基本的例子,说明如何应用该技术: ```python from diffusers import StableDiffusionInpaintPipeline import torch from PIL import Image, ImageOps # 加载pipeline并选择设备(CPU/GPU) pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("cuda") # 打开原图和mask(黑白二值化后的遮罩层),调整大小匹配输入尺寸 image = Image.open("./example_image.png") mask = Image.open("./example_mask.png").convert('L') mask = ImageOps.invert(mask) result = pipe(prompt="a picture of a cat", image=image, mask_image=mask).images[0] # 展示结果 result.show() ``` 这段代码展示了加载预训练模型、准备数据集(包括源图像及其对应的掩模),最后调用`pipe()`函数完成实际的任务。注意这里的提示词可以根据个人需求自定义更改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值