Stable Diffusion(SD)神器插件Inpaint Anything--简单快速实现换装换脸

在Stable Diffusion绘画工具中,Inpaint Anything算法具备移除、填补及替换任意内容的能力,它允许用户通过简单点击图像上的任何物体,实现一键式的擦除与替换功能,并能自由更改背景。这一特性极大地提升了蒙版创建的效率与精确度,使得用户在节省大量时间与精力的同时,能够收获更加优质的修复成果。

1、Inpaint Anything插件下载地址

地址:[https://github.com/Uminosachi/sd-webui-inpaint-anything.git]
2、Inpaint Anything插件安装

打开Stable Diffusion,选择扩展,从网址安装,输入Inpaint Anything插件的github地址

img

安装后,「重载UI」即可看到该功能按钮。

img

Inpaint Anything插件安装好后,还需要安装SAM模型

img

SAM 提供了三种模型供用户选择:对于拥有较高显存的用户,推荐下载 sam_vit_h 模型,它能提供更精准的识别效果;若显存约为8G,则适合下载 sam_vit_l 模型;而显存低于8G的用户,应选择下载 sam_vit_b 模型。在选定合适的模型后,用户只需点击“下载模型”按钮,下载完成的模型将会被保存在 Inpaint Anything 插件目录下的 [models]文件夹中。

img

3、Inpaint Anything插件使用方法

Inpaint Anything中上传你要修改的图片,点击“Run Segment Anything”,模型将参考图进行分割

img

在图片的右侧分割区域中,先调整笔刷的大小,使用鼠标点击并涂抹你想要分割的图片区域,以修改相应的色块。

img

完成选取操作后,请点击“创建蒙版”,随后,蒙版会出现在你指定的图像区域内。

img

你可以观察到,上衣部分已被选中并以白色突出显示。紧接着,在界面左下角,你会发现一排标签,此时请选择最右侧的“仅蒙版(Mask only)”选项。

img

出现的两个按钮:Get mask as alpha ofimage、Get mask,分别点击一下,你就得到了两张图:

img

左侧的功能实现直接抠图,会将前一步中高亮标出的部分精确抠取出来,并生成一张带有Alpha通道的PNG图片。而右侧的功能则是生成蒙版,其中高亮的部分会以白色呈现,其余部分则呈现为黑色。需要强调的是,这两张图片与原始图片的尺寸是完全一致的,用户可以直接将它们保存到本地。

蒙版调整说明:

若您发现蒙版的边缘不够精确,可以通过点击下方的“expand mask”按钮来整体向外扩展蒙版区域,这样可以帮助您稍微扩大蒙版的范围,以覆盖更广泛的区域。“Add mask by sketch”按钮:点击此按钮,您可以将手绘的区域添加到蒙版之中。在左侧的“仅蒙版”选项卡内,点击“获取遮罩”以创建蒙版图。

img

请点击“发送到[图生图重绘],以此将蒙版传送至图生图重绘蒙版的模式。

img

设置SD模型和图生图参数

选择 Stable Diffusion 模型,我们这里使用的是模特换装,使用真人写实模型:MajicMixRealistic_V7.[safetensors]

img

输入你要修改的提示词描述(提示词可以使用反推器进行反推),设置好宽高,分辨率与原图一致(500X700),重绘幅度0.6。

采样方法和迭代步数根据情况来设置,这里设置采样方法为DPM++ 2M Karras,迭代步数 30,只是进行模特换衣,暂时不开[脸部修复]

在重绘画布大小,选择“以蒙版尺寸重绘”。(白色部分是蒙版,黑色部分不是蒙版)

img

我们测试将白色衬衫修改成红色衬衫。

正向提示词:

1girl,brown hair**,(red shirt:1.8)**,closed eyes,earrings,full body,gradient,[gradient background],jewelry,lips,long sleeves,pants,shoes,short hair,solo,standing,(white footwear:1.5),

蒙版区域修改部分权重稍微增加,具体增加值,可以根据实际效果确认

反向提示词:

Gray level,(worst quality:2),(low quality:2),(normal quality:2),lowres,normal quality,((monochrome)),((grayscale)),skin spots,acnes,[skin blemishes],age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(mutilated:1.21),(tranny:1.331),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.21),(bad proportions:1.331),extra limbs,(disfigured:1.331),(missing arms:1.331),(extra legs:1.331),(fused fingers:1.61051),(too many fingers:1.61051),(unclear eyes:1.331),[lowers],bad hands,[missing fingers],extra digit,bad hands,missing fingers,(((extra arms and legs))),NG_DeepNegative_V1_75T,EasyNegative,negative_[hand-neg],

点击右上角的“生成”按钮。上衣已经换过来了。

img

也可以换成其他颜色,在正向提示词进行修改就可以,修改后,注意改下权重,这样更容易生成你满意的效果

现在AI绘画还是发展初期,大家都在摸索前进。

但新事物就意味着新机会,我们普通人要做的就是抢先进场,先学会技能,这样当真正的机会来了,你才能抓得住。

如果你对AI绘画感兴趣,我可以分享我在学习过程中收集的各种教程和资料。

学完后,可以毫无问题地应对市场上绝大部分的需求。

这份AI绘画资料包整理了Stable Diffusion入门学习思维导图Stable Diffusion安装包120000+提示词库,800+骨骼姿势图,Stable Diffusion学习书籍手册AI绘画视频教程AIGC实战等等。

完整版资料我已经打包好,点击下方卡片即可免费领取!

【Stable Diffusion学习路线思维导图】

img

【Stable Diffusion安装包(含常用插件、模型)】

img

【AI绘画12000+提示词库】

img

【AI绘画800+骨骼姿势图】

img

【AI绘画视频合集】

img

这份完整版的stable diffusion资料我已经打包好,点击下方卡片即可免费领取!

在这里插入图片描述

### Stable Diffusion Inpainting 教程使用指南 #### 了解Stable Diffusion中的Inpainting功能 Stable Diffusion是一个强大的生成模型,能够执行多种图像处理任务,其中包括inpainting(图像修复)。此过程涉及利用给定的原始图片以及指定区域的掩码来填充缺失部分或修改特定区域的内容[^1]。 #### 准备工作环境 为了实现这些操作,需先设置好运行环境。这通常意味着安装Python解释器及相关依赖库,并下载预训练好的Stable Diffusion权重文件。对于初学者来说,可以考虑获取一套完整的AIGC学习资源包,其中包含了详细的指导文档和其他辅助工具[^2]。 #### 实现简单Inpainting实例 下面展示了一个基本的例子,说明如何应用该技术: ```python from diffusers import StableDiffusionInpaintPipeline import torch from PIL import Image, ImageOps # 加载pipeline并选择设备(CPU/GPU) pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("cuda") # 打开原图和mask(黑白二值化后的遮罩层),调整大小匹配输入尺寸 image = Image.open("./example_image.png") mask = Image.open("./example_mask.png").convert('L') mask = ImageOps.invert(mask) result = pipe(prompt="a picture of a cat", image=image, mask_image=mask).images[0] # 展示结果 result.show() ``` 这段代码展示了加载预训练模型、准备数据集(包括源图像及其对应的掩模),最后调用`pipe()`函数完成实际的任务。注意这里的提示词可以根据个人需求自定义更改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值